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Scalable FPGA/ASIC Implementation Architecture for Parallel
Table-Lookup-Coding Using Multi-Ported Content Addressable
Memory
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and Hans Jürgen MATTAUSCH†, Members

SUMMARY This paper presents a scalable FPGA/ASIC implementa-
tion architecture for high-speed parallel table-lookup-coding using multi-
ported content addressable memory, aiming at facilitating effective table-
lookup-coding solutions. The multi-ported CAM adopts a Flexible Multi-
ported Content Addressable Memory (FMCAM) technology, which repre-
sents an effective parallel processing architecture and was previously re-
ported in [1]. To achieve a high-speed parallel table-lookup-coding so-
lution, FMCAM is improved by additional schemes for a single search
mode and counting value setting mode, so that it permits fast parallel table-
lookup-coding operations. Evaluation results for Huffman encoding within
the JPEG application show that a synthesized semi-custom ASIC imple-
mentation of the proposed architecture can already reduce the required
clock-cycle number by 93% in comparison to a conventional DSP. Fur-
thermore, the performance per area unit, measured in MOPS/mm2, can
be improved by a factor of 3.8 in comparison to parallel operated DSPs.
Consequently, the proposed architecture is very suitable for FPGA/ASIC
implementation, and is a promising solution for small area integrated real-
ization of real-time table-lookup-coding applications.
key words: multiport, content addressable memory, CAM, parallel pro-
cessing, SIMD, categorization, bit parallel block parallel, table-lookup-
coding, Huffman coding

1. Introduction

Multimedia applications, requiring the capabilities of
CODEC processing, image processing or image recogni-
tion, have spread to the end-user environment. In particular,
the modern communication-network infrastructure acceler-
ates the development of on-demand systems, digital broad-
casting, mobile equipment and so on. Furthermore, security
applications, for example ciphers, are developing more and
more.

The required basic processing operations for the above
applications can be classified into two types, namely the
arithmetic and the coding operations. In the case of the
JPEG algorithm for picture compression, the arithmetic op-
erations mainly consist of the translation from R, G and B
to Y, Cb and Cr representation, Discrete Cosine Transforma-
tion (DCT) and quantization. Since each Minimum Coded
Unit (MCU), which includes 8 × 8 pixels for the JPEG al-
gorithm, is processed independently, the above arithmetic
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operations are suitable for parallel processing architectures.
As coding operation the JPEG algorithm uses Huffman cod-
ing [2], [3]. Generally, Huffman coding is based on the
table-lookup-coding method and needs to prepare a code
word table that contains the mapping information between
the input symbols and the code words for encoding. Thus,
Huffman coding is difficult to parallelize, because it in-
volves essentially sequential operations, each requiring a
large hardware amount.

Presently, conventional architectures for consumer
products mainly improve the arithmetic operations based on
e.g. Single Instruction Multiple Data (SIMD) architectures.
Therefore, the coding operation is now becoming the bottle-
neck operation for fast real-time applications working with
multimedia and security contents.

For overcoming this coding-operation-related bottle-
neck, we propose an efficient parallel table-lookup-coding
architecture for FPGA/ASIC implementation using multi-
ported content addressable memory as a novel architecture
for high-speed and real-time coding operations. The multi-
ported CAM effectively uses the previously reported Flexi-
ble Multi-ported Content Addressable Memory (FMCAM)
technology [1], [4]–[6] and enables the table-lookup-coding
of multiple input symbols in parallel, while the hardware
amount becomes lower than for conventional architectures.

2. Conventional Table-Lookup-Coding Architectures

The table-lookup-coding operation is implemented in many
ASICs for consumer products and is also a field of on-going
research. For verifying the effect of the proposed archi-
tecture in Sect. 4.3, this section discusses Huffman coding,
which is a representative example for table-lookup-coding
algorithms and is implemented in JPEG and MPEG stan-
dards for compressing multimedia contents such as sound
and video, as well as in ZIP and LHA standards for com-
pressing data files. Especially, the encoding operation in
Huffman coding is known to be difficult to implement with
parallel processing [2], [3], [7].

Generally, Huffman encoding, which uses a fixed stan-
dardized code word table, has often been implemented by
the conventional table-lookup-coding architectures. Most
real applications use Huffman encoding and the correspond-
ing standardized coding tables [8], [9] have been embedded

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers



KUMAKI et al.: SCALABLE FPGA/ASIC IMPLEMENTATION ARCHITECTURE
347

in various conventional hardware architectures, which are
based on SRAMs, hard-wired logic or CAMs.

The standardized code word table, which is imple-
mented in a single port SRAM, is also often used in DSP-
based systems [7], [10], [11]. However, the encoding oper-
ation needs a large number of clock cycles for finding the
Huffman code word in the code word table, because many
read operations and comparison operations have to be exe-
cuted sequentially during the searching process.

The hard-wired logic solution [12], [13], which uses
specific hardware for each application, often constructs the
code word table by an internal AND-OR array, and is un-
able to update or modify the code words in this table during
encoding. Therefore, it cannot be considered suitable for
changing application-requirement specifications.

A previously reported single-port CAM approach [14],
[15] is able to substantially improve the encoding speed.
Since the CAM carries out a parallel search within the
database of reference words, the processing time for the nec-
essary comparison function is much faster than in conven-
tional software implementations, which are executed by a
processor, as well as hardware implementations, which are
based on SRAM because these implementations operate se-
quentially on the database for carrying out the comparison
process.

3. Flexible Multi-Ported Content Addressable Memory
with Parallel Search Hardware

For improving the efficiency of the multi-ported CAM struc-
ture, we have been proposing a Flexible Multi-ported Con-
tent Addressable Memory (FMCAM) architecture [1], [4]–
[6], as shown in Fig. 1, which is a novel functional memory
for parallel search.

3.1 Original FMCAM Architecture

The originally proposed FMCAM architecture [1] has p in-
put/output ports and a common storage capacity, which is
called contents-table, of 2a reference words with d-bit word-
length. As shown in Fig. 1, each port is able to receive
comparison data of d-bit length and mask data of d-bit

Fig. 1 Input/output configuration overview of the FMCAM architecture.

length. The corresponding output consists of a match sig-
nal of 1-bit length and a match address of a-bit length. Fur-
thermore, asynchronous processing is allowed at each port
so that the search operation can start as soon as search-
request data is received, without waiting for synchroniza-
tion with the other ports. Due to the parallel operation of
all ports, the processing speed is p times as fast as for a
conventional single-port CAM. Besides that, the FMCAM
architecture applies two additional concepts for reducing
the hardware resources. The first concept is a Bit-Parallel
and Block-Parallel (BPBP) search [16], [17] instead of the
a Bit-Parallel and Word-Parallel (BPWP) search, which is
often applied in a conventional fully-parallel CAM. The
second concept is a categorization of the stored reference
words [18], [19]. As a result, the increase of the comparator
number due to the multiple ports are limited.

3.2 Adaptation of the FMCAM Architecture to Table-
Lookup-Coding Applications

In Ref. [1], the FMCAM architecture has been shown to re-
sult in effective devices, indicated by their comparatively
small product of implementation area and processing time
(area-time product). Therefore, if this architecture is ex-
ploited to process multiple searches, it is capable to acceler-
ate most table-lookup-coding applications, and in particular
easily parallelizable table-lookup-coding applications, such
as data compression and encryption.

In the following the three novel ideas for adapting the
FMCAM architecture to encoding and encryption applica-
tions are explained. The corresponding block diagram is
shown in Fig. 2.

Fig. 2 Detailed block diagram of the adapted FMCAM.
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3.2.1 Multiple/Single Search Mode

The original FMCAM architecture exploits the BPBP search
instead of the BPWP search. Thus, it lowers the number of
comparators in spite of having several ports. However, the
original FMCAM architecture requires more than one clock
cycle for completing a comparison task. Applications such
as Huffman encoding translate each input symbol into a con-
verted symbol. Since input and converted symbols have a
one-to-one relation, the clock cycles after finding a match-
ing symbol are wasted.

For overcoming for this problem, the adapted FMCAM
can select between two search modes, namely a multiple
search mode and a single search mode. Figure 3 shows the
difference of waveforms for the search process with both
searching modes, which are mainly executed in the port
modules of the port block as shown in Figs. 2 and 5. The
multiple search mode (Fig. 3 (a)) is equivalent to the orig-
inal FMCAM comparison process and applied if multiple
matches to the input data may exist. Since the number of
clock cycles in the comparison process is fixed, as in con-
ventional CAM architectures applying BPBP searches, the
original FMCAM normally wastes several clock cycles in
comparison operations after finding the last matching data.
The single search mode (Fig. 3 (b)) realizes a faster compar-
ison process for well-defined single match searches. The
adapted FMCAM, which is operated in the single search
mode, can stop the comparison process immediately after
the first matching symbol is detected. As a result, the search
time of the adapted FMCAM becomes shorter than that of
the original FMCAM.

Fig. 3 Two search waveforms of the adapted FMCAM: (a) Multiple
search mode, applied if multiple matches may exist, (b) Single search
mode, applied if the search problem has a single well defined match.

3.2.2 Counting Value Setting Mode

For decreasing the number of comparators, the original
FMCAM exploits a categorization concept [18], [19]. The
stored reference words are classified into plural categories
according to a pre-defined rule. This process, which is exe-
cuted during initialization and contents-table input, enables
to choose a memory structure with single-port banks. While
restricting each search request to one bank, the adapted
FMCAM achieves multi-port capability by independent and
parallel operation of these banks as in a bank-based multi-
ported memory. Consequently, the comparators can be
located separately from the contents-table of the memory
banks and a reduction of the number of comparators can be
realized. However, if the categorized data does not fill the
storage capacity provided for a category, a complete search
through the storage space would waste a number of clock
cycles. In the illustration of Fig. 4 (a), a category bank has
four invalid data. Thus, four clock cycles are unnecessarily
executed after receiving comparison data. For overcoming
this drawback, the adapted FMCAM can adjust the loop-
address-counter condition in the controller, shown in Fig. 2
and described in Sect. 3.3.3, and thus allows to set the clock
cycle number for the comparison process according to the
application needs. This is illustrated in Fig. 4 (b), where
the loop-address-counter continuously keeps counting just
twelve clock cycles, so that the adapted FMCAM can elim-
inate the four wasted clock cycles used in the comparison
operations with the invalid data.

Fig. 4 Two address counting waveforms of the adapted FMCAM:
(a) Default counting mode, (b) Counting value setting mode.
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3.2.3 Scalability of the Categorization Structure

Conventional CAM architectures [18], [19], which imple-
ment a categorization are unable to change the magnitude
of the category’s capacity. Thus, the capacity of a category
may become too small or too large in the case of certain ap-
plications, which have a different distribution of the stored
contents. For extending the capability to all possible appli-
cations, the adapted FMCAM uses a freely scalable catego-
rization structure, which is mainly realized in the category
block of Fig. 2. The adapted FMCAM can combine plural
category resources, which are needed to store the reference
data of a large category into one new category and operate
the comparison process accordingly. While the number of
comparison clock cycles will increase in the case of com-
bining some smaller categories, it is still possible to execute
a comparatively fast search if the user can select the single
search mode. Furthermore, the definition of the category
pattern and the position of category bits in the complete en-
try can be modified flexibly by use of the adapted FMCAM.

3.3 Structure of the Adapted FMCAM

The block diagram of the adapted FMCAM, shown in Fig. 2,
is composed of three main parts, a port block, a category
block and a controller. These three parts can be operated
independently of each other. A more detailed description of
their hardware structures is given in the following sections.

3.3.1 Port Block

The port block is mainly constructed from p port modules
corresponding to the designed port number p of the FM-
CAM. The block diagram of an input/output port module
in the port block is shown in Fig. 5. It is able to receive
comparison data and mask data, both of d-bit length. The

Fig. 5 Block diagram of a port module of the adapted FMCAM.

output data from the port module consists of a match signal
of 1-bit length and the corresponding match address of a-bit
length. All ports support asynchronous processing, which
means that the search operation can start as soon as search-
request data is received, without waiting for synchronization
with other port modules. Due to the parallel operation of
all ports, the processing speed becomes faster in proportion
with the port number p.

Each port module is composed of a d-bit search-
comparator, c category-comparators for d-bit words, a cat-
egory decoder, a demultiplexer, several registers and some
combinational logic. When a port module receives an input
data, the category-comparators compare this input data with
the present category structure data of the FMCAM to deter-
mine the category which should be searched. The category
decoder translates the category-comparator results into con-
trol signals for a multiplexer, which connects the data from
the searched category to the search-comparator. Thus, the
search-comparator is enabled to compare the input data with
the relevant reference data of the FMCAM. At the same
time, the first comparison address generated by the loop-
address-counter is memorized in a register, and becomes the
starting address for the comparison process to the reference
data of the relevant category. This comparison process con-
tinues until the address value from the loop-address-counter
is again equal to the starting value stored in the register.
Since the loop-address-counter continuously keeps count-
ing to the next comparison address in each clock cycle and
broadcasts this current address to all port modules, each port
module can memorize its unique starting address indepen-
dently.

Normally, the adapted FMCAM is operated in the mul-
tiple search mode and the search-comparator enables the
output of several match signals. In this case, the match ad-
dresses are generated by combining the matching compari-
son address and the category address. On the other hand, if a
search mode select signal, which is sent from the controller,
rises to high condition, the adapted FMCAM changes to sin-
gle search mode operation. Then, as soon as the first match-
ing symbol is detected by the search-comparator, the port
module is reset and made ready to receive a new compari-
son data.

3.3.2 Category Block

A conventional CAM carries out a parallel search within
its database of reference words. The normal approach for
realization of this CAM functionality integrates the neces-
sary additional hardware resources such as the comparators
into the memory field. This approach results in 2 important
problems. On one hand, it becomes impossible to use con-
ventional memory macros for the CAM construction, which
restricts wide application of the CAM function in integrated
systems. On the other hand, the introduction of multiple
ports becomes difficult because the amount of additional
hardware increases in proportion to not only the number
of reference words but also proportionally to the number of
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ports. Although various attempts to overcome above restric-
tions have been made [20], [21], finding an optimum tradeoff
between processing speed and hardware resources turn out
to be difficult.

For overcoming above drawback, the FMCAM applies
the separation concept of the CAM-specific hardware, in
particular the comparators, from the memory field. The
chosen realization of the comparison function within the
multiple ports leads however to the necessity of data trans-
fers form the memory part to the comparators in the port
modules. On the other hand, big advantages are obtained,
namely that conventional memory macros can be used for
data storage in FPGA/ASIC implementations and that the
number of necessary comparators can be substantially re-
duced. Furthermore, the design time for a VLSI implemen-
tation of the FMCAM becomes shorter than that of conven-
tional CAM designs, because semi-custom design methods
can be applied without the penalty of a largely increased
chip area.

The category block consists of several category banks.
Each category bank receives a bank write enable signal and
memorizes the reference data as stored words in a conven-
tional single-port-memory bank. The reference data are
broadcasted from the category banks to all port modules dur-
ing FMCAM operation. As soon as each port has decided on
the category of the required reference data, the broadcasted
reference data from this specific category are loaded into the
port module.

3.3.3 Controller

The controller is based on two main modules; the category-
registers and the loop-address-counter. The category-
registers are used to memorize the freely scalable category
structure. These memorized category-structure patterns are
broadcasted to each port module. The loop-address-counter
implements the concept of circular counting, which enables
the asynchronous parallel comparison operation of all ports.
The address-space size of the address counter is just the
same as the address-space size of a category bank in the
category module. The address counter sequentially gener-
ates the addresses of the stored reference words in each cat-
egory bank and continues counting independent of whether
search-request data is arriving at the input of a port module
or not. The conventional counter solution of 1-port CAMs
with BPBP construction, on the other hand, starts address
generation from the first address only after receiving in-
put data. Consequently, the conventional concept, when
extended to the multi-port case, would require a synchro-
nization time for the ports, during which arriving search re-
quests at a specific port have to wait until presently on-going
searches at other ports are finished. Since the loop-address-
counter automatically resumes counting from the first ad-
dress after the last address has been reached, each port mod-
ule is able to memorize its individual starting address in a
register and can execute its search process as soon as search-
request data arrives. Thus the waiting time due to the syn-

chronization process can be removed.

4. Proposal of an Adapted FMCAM-Based High-Speed
Parallel Table-Lookup-Coding Architecture

Coding algorithms are often included in image processing
and encryption applications, which mostly combine paral-
lel and sequential processing of the data. Typical media
processors consist of a parallel processing block and a se-
quential processing block [22]. In the example of the JPEG
application, the parallel processing block is mainly assigned
to the tasks of Discrete Cosine Transformation (DCT) and
data quantization, while the sequential processing block is
mainly used for Huffman coding. Since the parallel process-
ing block often exploits a SIMD architecture, above arith-
metic algorithms for DCT and data quantization are exe-
cuted effectively. However, an efficient parallel-processing
implementation of Huffman coding is difficult to realize [2],
[3]. Therefore, the Huffman encoding occupies normally
a large share of about 30% of the processing time in the
JPEG algorithm [7], [23]. Since the sequential processing
tasks depend on the sequential processing block, data has to
be transferred between the parallel and sequential process-
ing blocks across a bus, which results in higher bus traffic
and increases the frequency of bus conflicts. If the paral-
lel processing block is upgraded to enable processing of the
Huffman coding in parallel, plural Huffman tables as well
as the corresponding number of processing elements have to
be provided. As the result, the hardware amount increases
drastically in particular due to the multiple tables.

For resolving the above bottleneck, an implementation
of the adapted FMCAM near the parallel processing block is
very effective, also for reducing the traffic on the bus. Since
the adapted FMCAM enables to combine the input and out-
put ports of several processing elements (PEs), which are
implemented in the parallel processing block with SIMD ar-
chitecture, and executes multiple searches in parallel, it al-
lows to overcome the drawbacks of the conventional table-
lookup-coding algorithm.

4.1 Procedure of the Adapted FMCAM-Based High-speed
Parallel Table-Lookup-Coding

The adapted FMCAM is used to map the input symbols to
the corresponding code word addresses and to enable par-
allel Huffman encoding of multiple input symbols in com-
bination with a multi-port RAM. The adapted FMCAM is
exploited to implement the input symbol table and the multi-
port RAM stores the code word table. An area-efficient
bank-based multi-port RAM architecture, as proposed in
[24], is very suitable for implementing the code word ta-
ble. The principle concept is explained in Fig. 6. When
the adapted FMCAM receives multiple input symbols, these
symbols are compared in parallel with stored symbols. Then
each output port of the adapted FMCAM sends the deter-
mined matching address to the corresponding port of the
multi-port RAM and finally the code words are outputted.
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Fig. 6 The proposed solution of parallel table-lookup-coding.

Of particular importance for the effectiveness of the
concept is the fact that the hardware amount of the adapted
FMCAM can be expected to be far less than that of a
parallel-CAM concept, operating several CAMs in paral-
lel [1]. Furtermore, the adapted FMCAM can perform fast
parallel comparison with stored symbols and realize a re-
duction of the comparison clock cycles by implementing the
multiple/single search mode and the counting value setting
mode of Figs. 3 and 4. Detailed comparison results are re-
ported in Sect. 4.3.

4.2 Adapted FMCAM Implementation Results

A soft-macro realization of the adapted FMCAM has been
developed with Verilog-HDL. For verifying the effective-
ness of the adapted FMCAM, FPGA and ASIC implementa-
tion results for the Verilog-HDL soft-macro are evaluated in
this section. For FPGA implementation of the adapted FM-
CAM, the ISE Foudation 7.1i tool and Synplify Pro 8.1 are
applied for synthesis and fitting to the target FPGA device
Xilinx, XC4VLX160. In this way maximum operating fre-
quency and total equivalent gate count are determined. For
ASIC implementation, the estimation results of maximum
operating frequency and total area consumption are evalu-
ated, when synthesized with the Synopsys Design Compiler
for a 90 nm CMOS technology. FPGA and ASIC results are
shown in Figs. 7 and 8, respectively. In our evaluation pro-
cess the address variable a, the data width variable d and the
category variable c are chosen as 8, 32 and 16, respectively.
The port variable p is varied from 1 to 16 to determine the
effect of increasing port numbers.

Figure 7 (a) shows the maximum operating frequency
after synthesis, Placement and Routing (P&R) for the FPGA
case, while Fig. 8 (a) shows the maximum operating fre-
quency of the synthesized FMCAMs for the ASIC case. In
both cases the maximum operating frequency is almost con-
stant up to the large number of 16 ports. This result indicates
that the adapted FMCAM has indeed the expected scalabil-
ity properties to high parallelism for FPGA and ASIC im-
plementation. Due to the independent location of port block,
category block and controller as well as their modular con-
struction, the maximum operating frequency is practically
not influenced by the number of ports. In the FPGA eval-
uation, the P&R maximum frequencies could only be de-
termined up to 8 ports due to the limited FPGA hardware
resources. The extrapolation to 16 ports is therefore just in-
dicated by a dashed line.

Fig. 7 FMCAM implementation results for the FPGA case (Xilinx
XC4VLX160) as a function of the number of ports: (a) Maximum oper-
ating frequency, (b) Total equivalent gate counts.

Fig. 8 FMCAM implementation results for the ASIC case (90 nm
CMOS technology) as a function of the number of ports: (a) Maximum
operating frequency, (b) Area consumption.
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Figure 7 (b) shows the total equivalent gate counts
for implementing the adapted FMCAM in the FPGA case,
while Fig. 8 (b) shows the estimated total area of the ASIC
implementation of the adapted FMCAM. The data com-
bines total cell area with virtual interconnect area and are
automatically calculated by the Synopsys Design Compiler,
as a function of the port number. Since all memory cells are
constructed from Flip-Flops in the synthesis, the memory
banks become larger than in a full-custom design. Gener-
ally, the area of multi-ported architectures, such as multi-
ported SRAM cells, increases with the square of the number
of ports. This fact has restricted the spread of the multi-
ported architectures. Since all port modules in the port
block of the adapted FMCAM have a common contents-
table, the area increases only linearly with just about 9% per
port. Thus, FMCAM is effectively available up to large port
numbers as a hardware resource for systems implemented
as FPGA and ASIC. From above results, it is concluded
that the adapted FMCAM is a very effective architecture not
only for FPGAs but also for ASICs.

4.3 Experimental Results for Huffman Encoding

In this section, several experimental results of the proposed
adapted FMCAM-based architecture for Huffman encoding
is reported. Four test pictures are used and shown in Fig. 9.
These pictures (a) to (d) are taken of various natural motives
and have several different characteristics for contents type
and pixel number. Figure 10 shows the number of clock cy-
cles for the Huffman encoding operation with these pictures.
The adapted FMCAM is compared with a conventional 16-
bit DSP, which has a 2-way VLIW (Very Long Instruction
Word) architecture, and the original FMCAM [1]. The en-
coding clock cycles with the original FMCAM are almost
always smaller than with the conventional DSP even in the
case of 1 port. Moreover, the clock-cycle number is reduc-
ing as expected according to the increasing number of ports.
The adapted FMCAM further reduces the clock-cycle num-
ber drastically due to application of the single match mode
and the counting value setting mode. The average clock cy-
cle number for adapted FMCAM with a given port number

Fig. 9 Test pictures.

is 43% smaller than for the original FMCAM. Furthermore,
in the case of picture (d) and for 16 ports, the clock cycle
number with the adapted FMCAM is 93% smaller than with
the conventional DSP.

Table 1 shows the average of encoding clock cycles per
one comparison task from 1 port to 16 ports. The adapted
FMCAM realizes fast parallel search due to single search
mode and counting value setting mode regardless of the
BPBP search. Thus, the adapted FMCAM can be compati-
ble with the requirements of restricting the amount of hard-
ware increases when realizing fast parallel search by multi-
ple ports.

Table 2 shows the processing efficiency expressed in
Mega Operations Per Second (MOPS) per mm2. The perfor-
mance in MOPS/mm2 for FMCAM is a function of the num-
ber of ports, which changes from 1 to 16. The counted op-
erations are the comparison tasks in the Huffman-encoding
process. For fair judgment between the adapted FMCAM
and the conventional DSP, above parameters deal with the
results of Fig. 8. For processing multiple data, several con-
ventional DSPs are used in parallel. Since the maximum
possible frequencies of both architectures are almost equal
to the each other, the maximum frequency constraint con-
dition of the adapted FMCAM is fixed to 200 MHz. There-

Fig. 10 Comparison of Huffman encoding clock cycles for FMCAM and
parallel DSP solutions.

Table 1 Average of Huffman encoding clock cycles per comparison
operation.
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Table 2 Comparison of Huffman-coding processing capability for FMCAM (original, adapted) and
parallel DSP solutions.

fore, all MOPS values become double if the number of ports
is doubled. It seems that the MOPS performance of the
parallel conventional DSPs is somewhat better than that of
the FMCAM. However, the FMCAM architecture can use
the hardware resources even in a synthesized design with
much better efficiency. Thus, the additional area consump-
tion remains smaller. Consequently, the MOPS/mm2 values
of the adapted FMCAM are superior to the other architec-
tures. Especially, in the case of 16 ports, the performance
in MOPS/mm2 of the adapted FMCAM is 1.7 times better
than that of the original FMCAM and can achieve an up to
3.8 times larger value than for conventional DSP.

As a result, the adapted FMCAM can realize an
area-efficient solution for high-speed parallel table-lookup-
coding applications. The adapted FMCAM is therefore suit-
able for replacing the sequential processing block, and can
additionally realize a traffic decrease on the internal bus,
thus avoiding bus conflicts between the encoding data and
other signals. Consequently, the adapted FMCAM archi-
tecture is a promising solution for real-time multimedia and
ciphers applications.

5. Conclusion

In this paper, a scalable FPGA/ASIC implementation ar-
chitecture for high-speed parallel table-lookup-coding using
multi-ported content addressable memory is proposed. This
architecture realizes fast coding for multimedia and cipher
applications using the also adapted FMCAM. For Huffman
encoding in the JPEG application, the clock cycle number of
the adapted FMCAM is up to 93% smaller than with a con-
ventional DSP. Furthermore, the efficiency of the adapted
FMCAM in MOPS/mm2 is up to 3.8 times higher than that
of conventional parallel operated DSPs.

Consequently, the adapted FMCAM is a very effective
architecture for FPGA and ASIC implementation with many
real-time table-lookup-coding application possibilities, be-
cause it operates parallel, is scalable and can be imple-
mented with small area consumption.
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