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Abstract— In the sub-100nm MOS regime, carrier

transport exhibits the particle-wave dual nature. In

this paper, the advance of quantum transport mod-

eling at both the macroscopic and microscopic levels

is reviewed. Starting from solving Schrödinger equa-

tion with open boundary condition, various methods

including NEGF (non-equilibrium Green’s function),

QTBM (quantum transmitting boundary method),

QDAME (quantum device analysis by modal evalu-

ation), and QHD (quantum hydrodynamic) and DG

(for density gradient) are introduced. The results of

device simulation using NEGF are presented for a 3D

FinFET and compact model based on 2D quantum

mechanical effects and ballistic transport is described.

I. Introduction

Today’s advanced MOS structure has its dimension fall
well into the regime of so-called mesoscopic domain, where
the free-flight path of carriers without scattering is compa-
rable with the size of the device. It has long been realized
that the quantum mechanical effects play ever important
role in determining the device performance [1].

The modeling work of carrier quantum transport in
MOSFETs can be categorized into two aspects: device
simulation and compact circuit modeling. In the for-
mer, the quantum transport is further modeled at micro-
scopic level, essentially solving the Schrödinger equation
for wavefunctions, and macroscopic level which solves a
set of continuity/conservation-based PDEs (partial dif-
ferential equation) for such macro-quantities as carrier
concentration and temperature. In the latter, efforts are
mainly focused on the threshold voltage correction due to
the QM effects and the impact of ballistic carrier trans-
port on device I-V characteristics.

This paper discusses both the above modeling aspects
with emphasis on modeling approach to quantum trans-
port in MOS structures.

II. Wigner-Boltzmann Equation and

Macroscopic QM Modeling Approaches

Wigner [2] proposed a distribution function in real and
crystal momentum spaces, r,p, which is a Fourier trans-
form of the density matrix for a quantum state governed

by the Schrödinger equation. Wigner function can be ob-
tained by solving the Wigner-Boltzmann equation,
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where operator sin is understood as the power expansion
of its argument and the gradient ∇U operates only on the
U part of its operands in the real space. Retaining the
terms up to h̄2 in the series expansion and take the first
three moments in p-space (1,p,p · p/2m∗) for the above
equation, one obtains the set of quantum hydrodynamic
(QHD) equations for carrier, momentum, and energy con-
servation [3]. The quantum corrections of order h̄2 are in-
corporated in the stress tensor, which is needed in QHD
equations, and energy density as (for electrons)
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where I is the identity matrix and all QM correction terms
are related to the gradient of the carrier density. A more
specific density gradient (DG) approach is based on the
modification of the drift-diffusion formulation [4]:
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where Fn is the electron flux density, V is the potential
solved from the Poisson’s equation, and bn for 3D case.

Another macroscopic QM modeling approach is the ef-
fective potential (EP) and it takes into consideration the
finite size of the electron wavepacket [5]. The compari-
son of DG, EP, and a more complete Schrödinger/Poisson
equation solver is shown in Fig. 1. The advantage of
macroscopic QM modeling is the capability of analyzing
non-planar, multi-dimensional device structures and for
different modes of analysis: small signal ac, time tran-
sient, etc.

III. Solving Schrödinger Equation with Open

Boundary Conditions

For sufficiently small scales, electrons are ballistic and
coherent over the entire device region. Quantum states



Fig. 1. Comparison between EP and DG against a complete
Schrödinger-Poisson solver for the carrier distribution in an
inversion layer.

which carry current, also called “scattering states”, are
more important in understanding current flow through
small coherent regions. It is necessary to solve multi-
dimensional Schrödinger equation directly with open
boundary condition. There are basically two types of
methods in this approach: using the transmitting bound-
ary (QTBM [6] and QDAME [7]) for ballistic transport,
and using Green’s function [8] which can include the scat-
tering inside the device. Once the wavefunction or Green’s
function is found, the relevant quantities to the device
characteristics such as the carrier and current density can
be calculated.

IV. Quasi-3D QM Simulation of FinFETs

Hybrid, two-dimensional (2D) approach which com-
bines the charge distribution in the device region solved
from Schrödinger and Poisson equations and semi-
classical transport along the channel is useful in inves-
tigating the device performance during nano-scale MOS
design. Recently, a quasi-3D model with complete QM
theory but at limited dimensions (NEGF along the chan-
nel and Schrödinger in the cross-section of the channel)
has been developed for the evaluation of FinFET perfor-
mance as compared to double-gate SOI [9]. It is revealed
that for the slab (or film in double-gate SOI) thickness
of 3 nm and gate length of 10 nm, FinFET can provide
better on/off current ratio than double-gate SOI.

V. Ballistic MOS Model (BMM) with 2D QM

Effects

There have been tremendous efforts in building QM ef-
fects in the MOS compact modeling, mostly based on the
1D QM corrections to the threshold voltage and ballistic
transport along the channel [10].

A new compact MOS model, which combines the ballis-
tic transport and 2D QM effects, explores the WKB the-
ory to model the subband lowering in the confined dimen-
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Fig. 2. Comparison between simulation (lines) and measurement
(symbols) data for Toshiba 35 nm CMOS. Dashed line is without
2D QM correction to Vth.

sion (perpendicular to the channel) because of the open
boundary along the channel [11]. An empirical formula
for 2D-QM-corrected threshold voltage is proposed. The
model has been applied to bulk CMOS with gate length
ranging between 15 nm and 45 nm. In Fig. 2, the com-
parison of the output characteristics of the 35 nm device
between experimental data and analytical results is pre-
sented. It is clear seen that without considering the QM
effects along the channel, the analytical results grossly
underestimate the real data.
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