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Introduction
Manifestation of quantum mechanical effects on MOS

characteristics:

• Increasing effective gate oxide thickness with conse-

quence of

– Smaller gate capacitance

– Larger threshold voltage

• Tunneling current

– through gate oxide

– through barrier between S/D along the channel

• Ballistic transport

• Subthreshold slope
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Modeling approaches:

• Macroscopic: particle (solve Shockley semiconductor

eqs.)

– Quantum hydrodynamic model (QHD)

– Density gradient drift-diffusion (QDD)

– Effective potential approach (EP)

• Microscopic: wavefunction (solve Schrödinger eq.)

– Quantum transmitting boundary method (QTBM)

– Modified QTBM – QDAME

– Green’s function approach – NEGF

• Compact circuit model

– Changing threshold voltage

– Model ballistic transport (transmission theory)
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Schrödinger Equation and
Wigner Function

• Schrödinger Equation[
− �

2

2m∗∇2 + U(r)

]
Ψ(r) = EΨ(r) (1)

• Wigner Function

fW (r,p) =
1

(π�)3

∫
Ψ∗(r + r′)Ψ(r − r′)e2ip·r′/�dr′ (2)

Momentum-shifted Wigner fuction

f
(2)
W (x,p) = A e−βE

(2π�)3

{
1 + �

2

[
− β2

8m∗∇2U

+
β3

24m∗(∇U · ∇U) +
β3

24m∗(p
′ · ∇)2U

]}
(3)

where p′ = p − m∗u with u, the macroscopic fluid (or drift)

velocity, and E = p′2/2m∗ + U .
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• Wigner-Boltzmann Equation

∂fW
∂t

+
p · ∇fW
m∗ − 2

�
sin

(
�

2
∇U · ∇p

)
U(r)fW (r,p) = 0 (4)

Or use the integral form by defining the nonlocal potential energy

Û(r,p) = 2

∫
sin
(p · y

�

)
[U(r + y/2) − U(r − y/2)] dy (5)

The Wigner-Boltzmann eq. then takes form of

∂fW
∂t

+
p · ∇fW
m∗ − 2

�

∫
1

2π�
Û(r,p − p′)fW (r,p′)dp′ = 0 (6)
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Moment Approach – QHD
• Retaining terms up to �

2 in the serious expansion of Eq. (4) and

take first three moments in p-space: 1,p,p · p/2m∗.

• Quantum Hydrodynamic Equations

∂n

∂t
+

1

m∗∇ · Π = 0 (7)

∂

∂t
Πi + ∇ · (uΠi) −

3∑
j=1

∂Pji
∂xj

= −n∂U
∂xi

− 1

τp
Πi, i = 1, 2, 3(8)

∂W

∂t
+ ∇ · (uW − P̂u + q) = − 1

m∗Π · ∇U − W −W0

τw
(9)

for variables n,u, and energy density W , where Π = nm∗u is the

momentum density and P̂ the stress tensor.

• Quantum corrections

The gradient of carrier density is a manifestation of non-locality,

which is the essence of quantum mechanics.
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– Stress tensor

P̂ = −nTI +
�

2n

12m∗(∇∇) lnn (10)

– Energy density

W =
3

2
nT +

1

2
m∗nu2 − �

2n

24m∗∇2 lnn (11)

– A compact form

∇ · (∇ lnn) = − 1

n2
∇n · ∇n +

1

n
∇2n (12)

2
∇2√n√

n
= −1

2

1

n2
∇n · ∇n +

1

n
∇2n (13)
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Density Gradient (DG)
Drift-Diffusion Model

Vn = V +Qn (14)

Vp = V −Qp (15)

where quantum potential

Qn = 2bn
∇2√n√

n
, bn =

�
2

12qm∗
n

(16)

Qp = 2bp
∇2√p√

p
, bp =

�
2

12qm∗
p

(17)

Vn and Vp are used in the place of V for conventional DD formulation,

e.g.,

n = nie
(Vn−φn)/VT (18)

p = nie
(φp−Vp)/VT (19)
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The carrier fluxes are expressed as

Fn = −Dn∇n + µnn∇Vn (20)

Fp = −Dp∇p− µpp∇Vp (21)

Solving Shockley semiconductor equations for n, p, and V

∇ · (ε∇V ) = −q(p− n +N+
D −N−

A ) (22)

∇ · Fn + r = 0 (23)

∇ · Fp + r = 0 (24)

Solution approaches

(main challenge: the robustness of the method)

• Trade number of variables to the order of derivative

• Five variables: V, Sn =
√
n, Sp =

√
p, φn, and φp.
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Equation set:

∇ · (ε∇V ) + q(p− n +N+
D −N−

A ) = 0 (25)

∇ · (bn∇Sn) +
Sn
2

(
V − kBT

q
ln
n

ni
− φn

)
= 0 (26)

∇ · (bp∇Sp) − Sp
2

(
V +

kBT

q
ln
p

ni
− φp

)
= 0 (27)

∇ · (µnn∇φn) +
∂n

∂t
+ r = 0 (28)

∇ · (µpp∇φp) − ∂p

∂t
− r = 0 (29)

The disadvantage of this scheme is when b → 0, the Helmhotz

equations, Eqs. (26-27) becomes singular. The convergence be-

havior is poor, often needs to keep the bias step small to prevent

negative Sn(
√
n) and Sp(

√
p).
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Results

Figure 1: Measured and simulated C-V for tox = 2.1 nm and tunneling

through MOS gate structure using DG.
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• Use variables V, un, up, φn, and φp (Prof. Shinji Odanaka of Osaka

Uni.) where

un =
Vn − φn

2
, up =

φp − Vp
2

(30)

The advantage with variable u’s is that the carrier concentration

is guaranteed to be positive, e.g.,

Sn =
√
n =

√
nie

un/VT (31)

The eq. for un is

−bn∇ · (Sn∇un) + Snun =
Sn
2

(V − φn) (32)

This eq. is of Sturm-Liouville type of problem for un given Sn, V ,

and φn.
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Results:

Figure 2: Carrier distribution in double gate MOSFET (tSi = 5 nm,

tox = 1.5 nm, Lg = 25 nm.

The advantage: robustness – The drain bias can jump to 0.5 V in

one step.
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Effective Potential (EP) Model
• Considering electron wavepacket as finite in size

Veff =

∫
Vcl(x + y)G(y, a0)dy (33)

• Comparison between DG and EP models
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• Similarity with DG

Veff(x) =
1√

2πa0

∫
V (x + ξ)e−ξ

2/2a2
0dξ

≈ V (x) − 2a2
0

β

∂2 ln
√
n/n0

∂x2
+ · · · (34)

Poor accuracy of EP may be due to the missing of another term

with the same order as �
2.
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Microscopic QM Transport
• Quantum Transmitting Boundary Model (QTBM)

Find Ψ0(r) ∈ C2(Ω0), knowing the form of Ψi(ξi, ηi) ∈ C2(Ωi), i =

1, . . . , n. The boundary condition for Ψ0 in Ω0 is

Ψ0 = 0 on Γ0 = ∂Γ0 −
n∑
i=1

Γi (35)

Ψ0 = Ψi on Γi (36)

∇Ψ0 · nΓi
= ∇Ψi · nΓi

on Γi (37)
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General solution procedure:

– The solution in the lead i has the form of

ψi(ξi, ηi) =

Ni∑
m=1

[
aimχ

i
m(ξi)e

−jki
mηi + bimχ

i
m(ξi)e

jki
mηi

]

+

∞∑
m=Ni+1

bimχ
i
m(ξi)e

−jki
mηi (38)

– Eliminating the explicit dependence on Ψi, a mixed BC for Ψ0

on Γi is obtained as

∇Ψ0 · nΓi
|ξi =

N i∑
i=1

ikimχ
i
m(ξi)

(
−2aim +

∫
Γi

χim(Γi)Ψ0(Γi)dΓi

)

−
∞∑

m=N i+1

kimχ
i
m(ξi)

∫
Γi

χim(Γi)Ψ0(Γi)dΓi (39)
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• Quantum Device Analysis by Mode Evaluation

(QDAME)

Based on QTBM and has the following features:

– Able of evaluating I-V characteristics

– Discretely sample a device�s density of states using stand-

ing wave boundary conditions, decomposing the standing waves

into traveling waves injected from the contacts to assign occu-

pancies.

Solution procedure:

1. Find standing wavefunctions by imposing (at Γi)

sine : Ψ(s)
n = 0 =⇒ E(s)

n

cosine : ∇Ψ(c)
n · nΓi

= 0 =⇒ E(c)
n
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2. Decompose the normal mode into traveling components

Ψ(s,c)
n (r) =

∑
i

Φ
(s,c)
n,i (r) (40)

3. Given the normal mode energy and the injection coefficients, the

traveling components are computed using a modified version of

the QTBM.

4. The electron density n(r) is the sum of electron densities from

the sine sampling n(s)(r) and cosine sampling n(c)(r), found by

summing over all traveling eigen-component densities multiplied

by a thermal occupation factor

n(r) =
∑
s,c

ns,c(r) =
∑
s,c

{∑
n,i

|Φs,c
n,i(r)|2

∑
p

cs,cp,n,iρ(k
i
D, T, E

s,c
n )

}
(41)

where the thermal occupancy factor is the sum of occupancy

factor ρ(kiD, T, E
s,c
n ) and coefficients cs,cp,n,i representing the frac-

22/48

�

�

�

�

�

�

�

tional weight of each mode p in lead i making up the traveling

eigen-component.

Drifted Fermi-Dirac occupancy factor

ρ(kDi, T, E) =

(
8mi

zkBT

h2

)1/2

×F−1/2


EFi − E − �

2

2mi
η
kiD
(
kiD − 2kp,iη

)
kBT


 (42)

where the drift momentum �kiD in lead i is found from the

current continuity requirement between lead and device.

23/48

�

�

�

�

�

�

�

• Non-equilibrium Green’s Function (NEGF)

NEGF provides a microscopic theory for quantum transport in-

cluding dissipative interaction.

Green’s function, GR(r, r′), is obtained from solving Schrödinger

equation with boundary conditions

[E −Hd]G
R(r, r′) −

∫
ΣR(r, r1)G

R(r1, r
′)dr1 = δ(r − r′) (43)

which can be viewed as the wavefunction at the point r due to a

unit excitation at r′.

Without the source term, the above Green’s function becomes the

Schrödinger-like equation with boundary condition built-in it:

EΨ(r) = HdΨ(r) +

∫
ΣR(r, r1)Ψ(r1)dr1 (44)

which describes the dynamics of an electron inside the device re-

gion.
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Matrix form of Green’s function

GR =
[
EI −Hd − ΣR

]−1
(45)

The use of Green’s functions

– DOS: GR and its conjugate transpose GA = [GR]† represent the

density of states in the energy space.

N(E) =
1

2π
Tr
{
i[GR(E) −GA(E)]

}
(46)

Or the position-dependent density of states

ρ(r, E) = −1

π
Im
[
GR(r, r;E)

]
(47)
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Figure 3: DOS on the cross-section (3 nm×3 nm) of a FinFET
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– Carrier concentration: can be expressed using the so-called cor-

relation function Gn:

Gn(r, r′) =

∫ ∫
GR(r, r1)Σ

in(r1, r
′
1)[G

R(r′, r′1)]
∗dr1dr

′
1 (48)

where Σin is the inscattering function related to ΣR and the

quasi-Fermi level on the contact as in

Σin
p (r, r′;E) = fp(E, µp)Γp(r, r

′;E) (49)

where p represents the contact (or the lead) and µp is the quasi-

Fermi level for that contact and Γ = i
[
ΣR − {ΣR}†

]
.

ΣR = ΣR
ϕ +
∑
p

ΣR
p (50)

ΣR
p (i, j;E) = − �

2

2m∗a2

∑
m∈p

χm(pi)e
ikmaχm(pj) (51)
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The carrier concentration is

n(r) = 2

∫
1

2π
Gn(r, r;E)dE (52)

where the pre-factor 2 is for the spin degeneration.

– Current density: The current density inside the device is

j(r;E) = − iq�

2m∗ [(∇−∇′)Gn(r, r′;E)]r=r′ (53)

where the gradient operator ∇′ means that it only acts on r′.
The terminal current per unit energy is

i(E) =

∫
j(r, E) · dS (54)
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2D MOS Simulation using
NEGF

– NASA’s simulation of 2D MOSFET with NEGF, including a

self-consistent treatment of 2D gate oxide tunneling.
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Comparison with DG:

Figure 4: Electron distribution in the poly-gate region using DG and

NEGF for MIT wtm 25 (Lch = 25 nm).
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Quasi-3D Numerical Model for
FinFETs

• Simulation method:

– Schrödinger eq. solver on 2D cross-section

– NEGF along the channel

– 3D Poisson’s solver

• Device structure

Figure 5: FinFET structure and layout
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Figure 6: Simulation region and mesh

• Simulation details

– Separation of variables and WKB theory on x-direction

Ψ(x, y, z) = X(x)ϕ(y, z) = eikxxϕ(y, z) (55)
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– 2D Schrödinger eq. on y-z cross-section(
− �

2

2m∗
y

∂2

∂y2
− �

2

2m∗
z

∂2

∂z2

)
Ψi
x(y, z) − qVx(y, z)Ψ

i
x(y, z)

= Ei
t,xΨ

i
x(y, z) (56)

– Bounded states affected by different effective mass
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– 2D density of states (DOS)

– NEGF solution of 1D Schrödinger eq. with open BC for density

matrix in energy representation

H X(x) =

[
− �

2

2m∗
x

∂2

∂x2
+ Et(x)

]
X(x) = EX(x) (57)

G(E) = [EI −H − Σ(E)]−1 (58)
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where the self-energy matrix

Σ =




Σsource 0 · · · 0 0

0 Σs(1) · · · 0 0
... ... . . . ... ...

0 0 · · · Σs(n) 0

0 0 · · · 0 Σdrain


 (59)

For ballistic transport (neglecting scattering), Σs(i) = 0, i =

1, · · · , n, and

Σcontact(E) = − �
2

2m∗
x

d2

dx2
eiklx (60)

where kl can be solved from

E = Et,contact +
�

2

2m∗
x

d2

dx2
(1 − cos klx) (61)

Et,contact is the eigen-energy determined by the lead (contact).
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– The density matrix at energy E is

ρ(E) =
1

π

d

dx
[F (µs − E)AS + F (µd − E)AD] (62)

AS = G[i(Σs − Σ+
s )]G+, AD = G[i(Σd − Σ+

d )]G+ (63)

– 2D electron density for each subband
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– 3D electron density on the cross-section and along the channel.

Figure 7: Cross-section: 3 nm×3 nm
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– Size effect
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– I-V characteristics

I(E) = 2q
�
[F (µs − E) − F (µd − E)]Tr[ΓsAD]

= 2q
�
[F (µs − E) − F (µd − E)]Tr[ΓdAS]

(64)

Where Γs = i[Σs − Σ+
s ] and Γd = i[Σd − Σ+

d ].

Figure 8: Lch = 10, 5 nm, cross-section: 3 nm×3 nm, and tox = 1 nm
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Ballistic MOS Model (BMM)
with 2D QM Corrections

Features:

• Ballistic carrier transport along the channel

ID
W

= Q(0)
1 − r

1 + r

[
vT

F1/2(η)

F0(η)

] 1 − F1/2(η−UD)
F1/2(η)

1 + 1−r
1+r

F0(η−UD)
F0(η)

(65)

where vT is the thermal velocity, UD = VDS/VT , η = (EFS −
Emax)/kBT , and back scattering coefficient

r =
l

l + λ
, l = L

(
VT

β

VDS

)α
, λ = VT

2µ

vT

F 2
0 (η)

F−1(η)F1/2(η)

• QM corrected threshold voltage

Q(0) = CoxVg,eff (66)
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where Cox = εox/tox is the gate-oxide capacitance per unit surface

area and Vg,eff is the effective gate voltage,

Vg,eff =
2sVT ln

[
1 + exp

(
Vod

2sVT

)]
1 + 2sCox

√
2ψS

qε0εsiNsub
exp
[
Vod−2(VGS−Vth−Voff)

2sVT

] (67)

where Vod = VGS − VFB − φS −Qdep/Cox, s swing factor, and Voff

a parameter. The key of the modeling is to find right expression

for the threshold voltage

Vth = Vth,cl + ∆V1D qm + ∆Vpg qm + ∆V2D qm (68)

According to Natori,

Q(0) ≈ 2.5
qkT

2π�2

√
mtml

[
ln (1 + eη) + ln

(
1 + eη−UD

)]
(69)

from which one can find η, given bias.
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Band diagram along the channel
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– 1D-QM correction

∆V1D qm = 1 +
1

2Cox

√
2qε0εsiNsub

a1 + b1N sub + c1N
2
sub

(70)

N sub = Nsub/1018, fitting parameters a1 = 1.02411, b1 = 0.04606,

and c1 = −0.00206.
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– QM in poly gate

∆Vpg qm = ap + bpN sub = cpN sub (71)

ap = 0.01967, bp = 0.01133, and cp = 1
3 × 10−3
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– 2D Corrections

The solution to the 3D Schrödinger equation using the separa-

tion of variables as follows.

Ψ(x, y, z) =
A√
p(x)

exp

(
i

�

∫ x

p(ξ)dξ

)
︸ ︷︷ ︸

X(x)

·

√
2

W
sin
(nyπ
W

y
)

︸ ︷︷ ︸
Y (y)

·ϕnz
(z)︸ ︷︷ ︸

Z(z)

(72)

With WKB theory,

p(x) =
√

2mx[E − U(x, y, z)] (73)

i

�

∫ b

a

√
2mx[Ed − U(x)]dx = −4 (74)

for e−4 = 1.83% can be considered as negligibly small. The

correction to the threshold voltage due to 2D QM effects can
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be expressed as

∆V2D−QM =
Ed − Epeak

q

(
1 +

1

2Cox

√
ε0εSiq2Nsub

kBT ln(Nsub/n0)

)
(75)

The results by applying the 2D QM correction to the simulation

of transfer characteristics.

Analytical approach: approximate Enz
(x) with a parabola.

Enz
(x) ≈ Epeak − σ(x− xmax)

2 (76)

And obtain

Ed − Epeak =
8�

π

√
σ

2mx

(77)

The fitting parameter σ is less sensitive to tox and Nsub, but

strongly depends on the channel length L. An empirical formula

is

σ = 4.73 × 10−3e−L/16 (78)
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where L in units nm.
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Simulation Examples using BMM

Figure 9: Modeling of 14 nm MOSFET (A. Hokazono et al., 2002)

with BMM, Vgs = 0.25 − 0.65 V of step 0.1 V.
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Conclusions

• QM effects become first-order ones in nano-scale MOS-

FETs

• Robust macroscopic model(s) now exists for device

simulation

• Wavefunction based approach may find broad applica-

tion in nanoelectronic devices

• The built-in of QM effects in compact model likely

will take the similar path to the “surface potential”

approach.


