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Introduction

Manifestation of quantum mechanical effects on MOS
characteristics:

o Increasing effective gate oxide thickness with conse-
quence of

— Smaller gate capacitance

— Larger threshold voltage
e Tunneling current

— through gate oxide
— through barrier between S/D along the channel

e Ballistic transport

e Subthreshold slope
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Modeling approaches:
e Macroscopic: particle (solve Shockley semiconductor
eqgs.)
— Quantum hydrodynamic model (QHD)
— Density gradient drift-diffusion (QDD)
— Effective potential approach (EP)
e Microscopic: wavefunction (solve Schrédinger eq.)
— Quantum transmitting boundary method (QTBM)
— Modified QTBM - QDAME
— Green’s function approach — NEGF
e Compact circuit model
— Changing threshold voltage

— Model ballistic transport (transmission theory)

Schrodinger Equation and
Wigner Function

e Schrodinger Equation
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e Wigner Function
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where p’ = p — m*u with u, the macroscopic fluid (or drift)
velocity, and E = p?/2m* + U.
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o Wigner-Boltzmann Equation
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Or use the integral form by defining the nonlocal potential energy
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The Wigner-Boltzmann eq. then takes form of
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Moment Approach — QHD

o Retaining terms up to /% in the serious expansion of Eq. (4) and
take first three moments in p-space: 1, p,p - p/2m*.

e Quantum Hydrodynamic Equations
on 1
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for variables n, u, and energy density W, where IT = nm*u is the
momentum density and P the stress tensor.
e Quantum corrections

The gradient of carrier density is a manifestation of non-locality,
which is the essence of quantum mechanics.




— Stress tensor

Density Gradient (DG)
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Solution approaches
(main challenge: the robustness of the method)

e Trade number of variables to the order of derivative

o Five variables: V, 5, = \/n, S, = \/p, ¢, and ¢,

The disadvantage of this scheme is when b — 0, the Helmhotz
equations, Egs. (26-27) becomes singular. The convergence be-
havior is poor, often needs to keep the bias step small to prevent

negative S, (y/n) and S,(,/p).




Results

Figure 1: Measured and simulated C-V for ¢,, = 2.1 nm and tunneling
through MOS gate structure using DG.

o Use variables V, u,, u,, ¢,, and ¢, (Prof. Shinji Odanaka of Osaka
Uni.) where
‘/n - (bn ¢ -V
=T o W= . B) . (30)
The advantage with variable u’s is that the carrier concentration
is guaranteed to be positive, e.g.,

S, = v/n = /me'r (31)

Up

The eq. for u, is
—b,V - (8, V) + Sy, = %(V — bn) (32)

This eq. is of Sturm-Liouville type of problem for u, given S,V
and ¢,.

Results:
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Figure 2: Carrier distribution in double gate MOSFET (ts; = 5nm,
tox = 1.5nm, L, = 25nm.

The advantage: robustness — The drain bias can jump to 0.5V in
one step.

Effective Potential (EP) Model

e Considering electron wavepacket as finite in size
Ve = / Valx+y)Gly, ao)dy (33)

e Comparison between DG and EP models
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o Similarity with DG
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Poor accuracy of EP may be due to the missing of another term
with the same order as h?.
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Microscopic QM Transport

e Quantum Transmitting Boundary Model (QTBM)

Find Uy(r) € C*(€), knowing the form of U;(&;, ;) € C*(), i =
1,...,n. The boundary condition for Wy in €2 is

Wy = OonTy=0a0y— > T, (35)
i=1
Uy, = U, onl} (36)
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General solution procedure:

— The solution in the lead ¢ has the form of
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— Eliminating the explicit dependence on V;, a mixed BC for ¥,
on I is obtained as
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e Quantum Device Analysis by Mode Evaluation
(QDAME)

Based on QTBM and has the following features:

— Able of evaluating -V characteristics
— Discretely sample a device” s density of states using stand-
ing wave boundary conditions, decomposing the standing waves
into traveling waves injected from the contacts to assign occu-
pancies.
Solution procedure:
1. Find standing wavefunctions by imposing (at T;)
sine : U =0 = EV
cosine : VU . np, =0 = E




2. Decompose the normal mode into traveling components
) =30 w) (40)

3. Given the normal mode energy and the injection coefficients, the
traveling components are computed using a modified version of
the QTBM.

4. The electron density n(r) is the sum of electron densities from
the sine sampling n¢*)(r) and cosine sampling n(9(r), found by
summing over all traveling eigen-component densities multiplied
by a thermal occupation factor
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where the thermal occupancy factor is the sum of occupancy
factor p(kiy, T, E5¢) and coefficients ¢}

o tepresenting the frac-

tional weight of each mode p in lead i making up the traveling
eigen-component.

Drifted Fermi-Dirac occupancy factor
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where the drift momentum 1% in lead 7 is found from the
current continuity requirement between lead and device.

e Non-equilibrium Green’s Function (NEGF)

NEGF provides a microscopic theory for quantum transport in-

cluding dissipative interaction.

Green’s function, G*(r, '), is obtained from solving Schrédinger
equation with boundary conditions

[E — H))G"(xr, 1) — / SR (r ) GR(ry, v)dr, = §(r — 1) (43)

which can be viewed as the wavefunction at the point r due to a
unit excitation at r'.

Without the source term, the above Green’s function becomes the
Schrodinger-like equation with boundary condition built-in it:

EV(r)= HyV(r)+ /ER(r,rl)\I!(rl)drl (44)

which describes the dynamics of an electron inside the device re-
gion.

Matrix form of Green’s function
G* = [EI - H,— %" (45)

The use of Green’s functions

— DOS: GF and its conjugate transpose G4 = [GF]f represent the
density of states in the energy space.

1 .
N(E) = gTr {z[G’R(E) — GA(E)}} (46)
Or the position-dependent density of states

p(r,E) = —%Im [GR(x,r; E)) (47)




Figure 3: DOS on the cross-section (3nmx3nm) of a FInFET

— Carrier concentration: can be expressed using the so-called cor-
relation function G™:

G"(r,r) :// G (r, )X (ry, v)) [GR(Y, ¥))]*drydr)  (48)

where ¥ is the inscattering function related to X% and the
quasi-Fermi level on the contact as in

Sy B) = f(E, 1,)T,(x,x'; E) (49)

where p represents the contact (or the lead) and g, is the quasi-
Fermi level for that contact and I' =4 [ER - {ER}i] .

Sh=xf+> 5f (50)
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The carrier concentration is
1
n(r) = 2/—G’"(r,r; E)dE (52)
2m
where the pre-factor 2 is for the spin degeneration.

— Current density: The current density inside the device is

. iqh
e E) = -4
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r=r’

2m*
where the gradient operator V' means that it only acts on r'.
The terminal current per unit energy is

i(E) = / i(r ) - dS (54)

2D MOS Simulation using
NEGF

— NASA’s simulation of 2D MOSFET with NEGF, including a
self-consistent treatment of 2D gate oxide tunneling.




Comparison with DG:
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Figure 4: Electron distribution in the poly-gate region using DG and
NEGF for MIT wtm 25 (Lg, = 25nm).

Quasi-3D Numerical Model for
FinFETSs
e Simulation method:

— Schrédinger eq. solver on 2D cross-section
— NEGF along the channel
— 3D Poisson’s solver

e Device structure
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Figure 5: FInFET structure and layout

Figure 6: Simulation region and mesh

e Simulation details

— Separation of variables and WKB theory on z-direction

U(z,y,2) = X(x)e(y, 2) = €™ p(y, 2) (55)

— 2D Schrédinger eq. on y-z cross-section

R R e\, .
<—2—mya—y2 - Z_mZW) W (y, 2) — qValy, 2)Vi(y, 2)

= B,V (y,2) (56)

— Bounded states affected by different effective mass




— 2D density of states (DOS)
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— NEGF solution of 1D Schrédinger eq. with open BC for density
matrix in energy representation

HX(z)= {_QZ*% + Et(x)] X(@)y=EX(x) (57
G(E)=[EI-H-%(E)" (58)

where the self-energy matrix

Eso\.urce 0 e 0 0
0 (1) - 0 0
Y= : o : (59)
0 0 -+ %n) 0
0 0 e 0 Zclra.in
For ballistic transport (neglecting scattering), X,(i) = 0,7 =
1,-+-,n, and
n &
2 E _ ik
contact( ) Qm; dCEZe (60)
where k; can be solved from
n &
E = E, contact + Tm;w(l — cos kyx) (61)

E) contact 1s the eigen-energy determined by the lead (contact).

— The density matrix at energy FE is

1d
p(E) = Tz
Ag

Gli(S, — SHG*, Ap = Gli(S — S1)|G* (63)

[F (s — E)As + F(pa — E)Ap) (62)

— 2D electron density for each subband

— 3D electron density on the cross-section and along the channel.
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Figure 7: Cross-section: 3nmx3nm




— Size effect

— [-V characteristics

I(E) = 3[F(ps — E) = Fpa — E)|Tr[I Ap]
=3P (p — E) — Fpg — E) e[l Ag]

(64)
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Figure 8 Ly, = 10, 5nm, cross-section: 3nmx3nm, and ¢, = 1 nm

Ballistic MOS Model (BMM)
with 2D QM Corrections

Features:

e Ballistic carrier transport along the channel

Fij2(n=Up)
I _ o=t [y, Taln) e (65)
w L+r [ Foln) | 14 rFlilo)

1+r  Fo(n)

where vr is the thermal velocity, Up = Vps/Vr, n = (Eps —
E,.x)/ kT, and back scattering coefficient
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o QM corrected threshold voltage

Q(O) = Cowvg,cﬂ (66)

where C,; = €,,/t,, is the gate-oxide capacitance per unit surface
area and V¢ is the effective gate voltage,

2sVrn [1 + exp (2‘;“2)]

14 2sC,, 211115\‘] exp [VM*Z(VGS*Vm*Voﬁ)]
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where Vg = Vs — Vig — s — Quep/Co, s swing factor, and Vg
a parameter. The key of the modeling is to find right expression
for the threshold voltage

|‘/;5h = ‘/th,cl + A‘/1D,qm + A‘/})g,qm + A‘/ZD,qml (68)

According to Natori,

%./mtml [In(1+e”)+In(1+e"")]  (69)

from which one can find 7, given bias.

Q0) ~ 2.5




Band diagram along the channel

— 1D-QM correction

1 2 siNsu
AVipgm =1+ Lb_g (70)
2COX a; + bleub + Cleub

Now = Nyp/10' fitting parameters a; = 1.02411, b, = 0.04606,
and ¢; = —0.00206.

— QM in poly gate
A‘/pg,qm =ay + prsub = prsub

a, = 0.01967,b, = 0.01133, and ¢, = 1 x 103
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— 2D Corrections

The solution to the 3D Schrddinger equation using the separa-
tion of variables as follows.

(z,y,2) = %exp (% / Ip(&)d&) :

X(z)
2 (T
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— z
R 7
With WKB theory,

: / B = O = —4 (74)

= 1.83% can be considered as negligibly small. The
correction to the threshold voltage due to 2D QM effects can

for e™*




be expressed as

Ey — Epeax 1 €0€siq* Noun
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(75)
The results by applying the 2D QM correction to the simulation
of transfer characteristics.

Analytical approach: approximate E,_(z) with a parabola.

E,.(2) & Epear — 0(T — Tinax)” (76)
And obtain <
o
Ed - Epeak = ? 2mz (77)

The fitting parameter o is less sensitive to t,, and Ny, but
strongly depends on the channel length L. An empirical formula
is

0 =473 x 10727110 (78)
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where L in units nm.

Simulation Examples using BMM
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Figure 9: Modeling of 14nm MOSFET (A. Hokazono et al., 2002)
with BMM, V;, = 0.25 — 0.65V of step 0.1V.

Conclusions

o QM effects become first-order ones in nano-scale MOS-
FETs

e Robust macroscopic model(s) now exists for device
simulation

o Wavefunction based approach may find broad applica-
tion in nanoelectronic devices

e The built-in of QM effects in compact model likely
will take the similar path to the “surface potential”
approach.




