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Summary

This paper presents a methodology for the analy-
sis of the transient electromagnetic behavior of multiply
contacted interconnects.

It is shown that for applications with high switch-
ing frequencies and high pulse repetition rates with very
steep consecutive current ramps, the usual characteriza-
tion of interconnects by extracting an inductance matrix
based on a stationary current distribution is inadequate
and has to be extended or even replaced by the deter-
mination of distributed transient fields and the specifi-
cation of time-dependent characteristic quantities.

Furthermore it is demonstrated that only a full three-
dimensional transient analysis under realistic switching
conditions can give the necessary insight in the time-
dependent behavior of the electric and magnetic fields
in- and outside the interconnects, which are the cause of
the various distributed parasitic electromagnetic effects.

The method has been implemented in a new finite el-
ement simulator based on the C++ library DIFFPACK
[1]. This makes it feasible to analyze distributed para-
sitic effects in realistic interconnect structures with ac-
ceptable computational expense within a flexible soft-
ware environment.

Motivation

The electromagnetic behavior of interconnects is com-
monly described by an inductance matrix consisting of
the self- and mutual inductance coefficients. This is
done on the basis of the so-called magnetostatic approx-
imation, assuming a quasi-stationary current distribu-
tion in the conductors, which can be easily determined
for even complex geometries by solving Poissons equa-
tion or, more elaborate, in the time-harmonic domain
where also eddy currents and the skin effect are allowed
for. For these cases, a well-established method exists,
namely the Partial-Element-Equivalent-Circuit method
[2], which is based on determining partial inductances
by evaluating the well-known Neumann formula.

However, there are applications where the transient
character of the electromagnetic dynamical behavior can-
not be neglected, such as for very high switching fre-
quencies and high pulse repetition rates with very steep

consecutive current ramps. The latter situation is en-
countered in various application fields and is gaining
increasing relevance in electronic systems.

In view of the continuing trend to shortening switch-
ing times, we have developed a methodology for the
analysis of the full time-dependent electromagnetic be-
havior of interconnects. It includes the treatment of dis-
tributed parasitic effects, in particular time-dependent
inductive effects, eddy currents and current crowding
phenomena. Originally developed for high power appli-
cations, where switching times of some 100 ns or even
shorter and switched currents in the range of one kilo-
ampere have become feasible, this analysis method can
equally be applied to the field of micro- and nanode-
vices with much shorter switching times and very much
smaller current values but comparable pulse slopes and
aspect ratios.

Moreover, it has been demonstrated that only a full
three-dimensional transient simulation with realistic pulse
forms and switching conditions can reproduce or pre-
dictively simulate the real world behavior. The know-
ledge of the time-dependent electromagnetic fields inside
and outside the interconnects and of derived quantities,
e. g. the resulting current distributions and their cross-
talk, allows the minimization of distributed parasitics
and therefore the improvement of the interconnect to-
pography by shape optimization.

Methodological Concepts

We start with the time-dependent Maxwell equa-
tions considering time-varying current flows in one or
more conductors with unknown distributions of the cur-
rent density, where either the voltages at the terminals
of the conductors (voltage-driven case) or the terminal
currents (current-driven case) are given boundary data.
The basic configuration is depicted in Fig. 1. Maxwell’s
equations have to be solved in the so-called quasista-
tionary approximation, where the propagation of elec-
tromagnetic waves is neglected.

If the terminal voltages ug () are given, we make use
of a magnetic vector potential A and an electric scalar
potential :

B =curlA in Q. and Q,, (1)



E= Lo grady in Q.. (2)

ot
In this case the boundary data ug(t) control the scalar
potential at the terminals, while we have homogeneous
boundary conditions elsewhere. If the terminal currents
i (t) are given, the combination of a current vector po-
tential T' and a magnetic scalar potential ¢ is adequate:

J = curl(Ty +T), (3)
H= fo + T — grad® in Q; (4)
H="Ty— grad® inQ,. (5)

Both approaches are considered in practice. Particular
attention has to be paid to the analysis of the adjoint
boundary values, terminal currents and voltages, respec-
tively. Based on the above continuous field description
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Figure 1: Schematic representation of the quasistation-
ary electromagnetic field problem. The equations to be
solved in the conducting and in the non-conducting re-
gions are also shown.

of the problem, we are now ready for focussing on the
concept of inductances as a function of time. In the
voltage-driven case, we proceed as follows: The govern-
ing equation for the vector potential A becomes

1 - N
rot—rotA+ oA = —ogrady, (6)
1

subjected to Coulomb’s gauge div A = 0 as constraint.
Normally used to ensure the uniqueness of the magnetic
vector potential A and for numerical stability, the gauge
is additionally used here to decouple the potentials ¢
and A. In this way we obtain as governing equation for
o the Laplace equation

div (ograd ) =0 (7)

to calculate the quasi-stationary potential-driven cur-
rent contribution j,; = —ogrady and a kind of diffusion

equation
0A 1 -
— — AA=— 8
T Vo (8)

to determine the vector potential A Having calculated
the potentials ¢ and A, the total current density is ob-
tained by

j: ;qs + jind = —agradgp - O-A' (9)

To deal with problems of multiply contacted intercon-
nects, we build up the quasi-stationary current flow from
basis functions, using a separation of space and time
variables

qu(Fv t) = Z.;ka(;)-[ka(t) ’ (10)
k,«
where a denotes a single part of an interconnect struc-
ture and £ a single contact on the interconnect part a.
Using the analogue decomposition of the magnetic vec-
tor potential,

A(F 1) = Z/A’m(m — ) I (7)dr (11)
k,a

the resulting current distribution can be expressed as
the sum of a source current density j,s and an induced
current density jmd, related to each contact electrode
Cra:

-

i = jra@Ikal(t)

k,a
—0q /Eka(F,t — T)jka(T)dT (12)

Evaluating the magnetic field energy in terms of the
terminal currents Iy, (t), we find that a time-dependent
inductance matrix can be extracted:

Lioup(r) = / Fra () K (7, 7
Qo

1 - _Dr
J—< kale 7 j1a) (13)
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where D = M%A.

Based on these quantities and with a view to optimiz-
ing the interconnect topography, we are able to define
target functionals to assess the quality of a given in-
terconnect structure with respect to, e.g., the switching
time delay, signal integrity, signal cross-talk and related
quantities of interest.
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