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Summary

This paper presents a methodology for the analy-
sis of the transient electromagnetic behavior of multiply
contacted interconnects.

It is shown that for applications with high switch-
ing frequencies and high pulse repetition rates with very
steep consecutive current ramps, the usual characteriza-
tion of interconnects by extracting an inductance matrix
based on a stationary current distribution is inadequate
and has to be extended or even replaced by the deter-
mination of distributed transient fields and the specifi-
cation of time-dependent characteristic quantities.

Furthermore it is demonstrated that only a full three-
dimensional transient analysis under realistic switching
conditions can give the necessary insight in the time-
dependent behavior of the electric and magnetic fields
in- and outside the interconnects, which are the cause of
the various distributed parasitic electromagnetic effects.

The method has been implemented in a new finite el-
ement simulator based on the C++ library DIFFPACK
[1]. This makes it feasible to analyze distributed para-
sitic effects in realistic interconnect structures with ac-
ceptable computational expense within a flexible soft-
ware environment.

Motivation

The electromagnetic behavior of interconnects is com-
monly described by an inductance matrix consisting of
the self- and mutual inductance coefficients. This is
done on the basis of the so-called magnetostatic approx-
imation, assuming a quasi-stationary current distribu-
tion in the conductors, which can be easily determined
for even complex geometries by solving Poissons equa-
tion or, more elaborate, in the time-harmonic domain
where also eddy currents and the skin effect are allowed
for. For these cases, a well-established method exists,
namely the Partial-Element-Equivalent-Circuit method
[2], which is based on determining partial inductances
by evaluating the well-known Neumann formula.

However, there are applications where the transient
character of the electromagnetic dynamical behavior can-
not be neglected, such as for very high switching fre-
quencies and high pulse repetition rates with very steep

consecutive current ramps. The latter situation is en-
countered in various application fields and is gaining
increasing relevance in electronic systems.

In view of the continuing trend to shortening switch-
ing times, we have developed a methodology for the
analysis of the full time-dependent electromagnetic be-
havior of interconnects. It includes the treatment of dis-
tributed parasitic effects, in particular time-dependent
inductive effects, eddy currents and current crowding
phenomena. Originally developed for high power appli-
cations, where switching times of some 100 ns or even
shorter and switched currents in the range of one kilo-
ampere have become feasible, this analysis method can
equally be applied to the field of micro- and nanode-
vices with much shorter switching times and very much
smaller current values but comparable pulse slopes and
aspect ratios.

Moreover, it has been demonstrated that only a full
three-dimensional transient simulation with realistic pulse
forms and switching conditions can reproduce or pre-
dictively simulate the real world behavior. The know-
ledge of the time-dependent electromagnetic fields inside
and outside the interconnects and of derived quantities,
e. g. the resulting current distributions and their cross-
talk, allows the minimization of distributed parasitics
and therefore the improvement of the interconnect to-
pography by shape optimization.

Methodological Concepts

We start with the time-dependent Maxwell equa-
tions considering time-varying current flows in one or
more conductors with unknown distributions of the cur-
rent density, where either the voltages at the terminals
of the conductors (voltage-driven case) or the terminal
currents (current-driven case) are given boundary data.
The basic configuration is depicted in Fig. 1. Maxwell’s
equations have to be solved in the so-called quasista-
tionary approximation, where the propagation of elec-
tromagnetic waves is neglected.

If the terminal voltages uk(t) are given, we make use
of a magnetic vector potential �A and an electric scalar
potential ϕ:

�B = curl �A in Ωc and Ωn, (1)



�E = −∂ �A

∂t
− gradϕ in Ωc. (2)

In this case the boundary data uk(t) control the scalar
potential at the terminals, while we have homogeneous
boundary conditions elsewhere. If the terminal currents
ik(t) are given, the combination of a current vector po-
tential �T and a magnetic scalar potential Φ is adequate:

�J = curl(�T0 + �T ), (3)
�H = �T0 + �T − gradΦ in Ωc; (4)

�H = �T0 − gradΦ in Ωn. (5)

Both approaches are considered in practice. Particular
attention has to be paid to the analysis of the adjoint
boundary values, terminal currents and voltages, respec-
tively. Based on the above continuous field description
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Figure 1: Schematic representation of the quasistation-
ary electromagnetic field problem. The equations to be
solved in the conducting and in the non-conducting re-
gions are also shown.

of the problem, we are now ready for focussing on the
concept of inductances as a function of time. In the
voltage-driven case, we proceed as follows: The govern-
ing equation for the vector potential �A becomes

rot
1
µ

rot �A + σ �̇A = −σgradϕ , (6)

subjected to Coulomb’s gauge div �A = 0 as constraint.
Normally used to ensure the uniqueness of the magnetic
vector potential �A and for numerical stability, the gauge
is additionally used here to decouple the potentials ϕ
and �A. In this way we obtain as governing equation for
ϕ the Laplace equation

div (σgradϕ) = 0 (7)

to calculate the quasi-stationary potential-driven cur-
rent contribution �jqs = −σgradϕ and a kind of diffusion

equation

∂ �A

∂t
− 1

µσ
∆ �A = −∇ϕ (8)

to determine the vector potential �A. Having calculated
the potentials ϕ and �A, the total current density is ob-
tained by

�j = �jqs +�jind = −σgradϕ − σ �̇A (9)

To deal with problems of multiply contacted intercon-
nects, we build up the quasi-stationary current flow from
basis functions, using a separation of space and time
variables

�jqs(�r, t) =
∑
k,α

�jkα(�r)Ikα(t) , (10)

where α denotes a single part of an interconnect struc-
ture and k a single contact on the interconnect part α.
Using the analogue decomposition of the magnetic vec-
tor potential,

�A(�r, t) =
∑
k,α

∫
�Akα(�r, t − τ)Ikα(τ)dτ (11)

the resulting current distribution can be expressed as
the sum of a source current density �jqs and an induced
current density �jind, related to each contact electrode
Ckα:

�j(�r, t) =
∑
k,α

�jkα(�r)Ikα(t)

−σα

∫
�Akα(�r, t − τ)İkα(τ)dτ (12)

Evaluating the magnetic field energy in terms of the
terminal currents Ikα(t), we find that a time-dependent
inductance matrix can be extracted:

Lkα,lβ(τ) =
∫

Ωα

�jkα(�r) �Alβ(�r, τ)d3r

=
1
σα

〈�jkα|e−Dτ�jlβ〉 (13)

where D = 1
µσ�.

Based on these quantities and with a view to optimiz-
ing the interconnect topography, we are able to define
target functionals to assess the quality of a given in-
terconnect structure with respect to, e.g., the switching
time delay, signal integrity, signal cross-talk and related
quantities of interest.

REFERENCES

[1] Langtangen, H.P.: Computational Partial Differen-
tial Equations – Numerical Methods and DIFFPACK
Programming. Springer, 2nd edition, 2003.

[2] Ruehli, A.E.: Inductance Calculation in a Complex
Integrated Circuit Environment . IBM-Journal of Re-
search and Development (1972), pp. 470–481.


