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Motivation

The "Wiring Crisis"

e Complex topologies and conductor shapes
in multilevel interconnect structures

e Very short signal rise times (some ps)
and ever-increasing clock frequency
(towards 10 GHz) |

\4

Transient 3D-behavior of interconnects is
becoming a limiting factor (more than 50% of
signal delay results from interconnect wires)

Predictive simulation of circuit behavior based

on physical macromodels of interconnects is —>

becoming indispensable for circuit design!

Interconnect Wires in SRAM Cell
(IBM/CMOS 5X process)

"virtual prototyping"

Multiple Layer Metallization for SRAM-Technology
(IBM/CMOS 5X Process)

IBM J. Res. & Dev. Vol. 39(1/2)1995
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Motivation (Cont'd)

Problems to be analyzed:

o Parasitic electromagnetic effects in signal
propagation (delay, dispersive distortion of
wave- and pulse-form, reflection and scattering,
cross-talk between neighboring wires)

¢ Optimization of interconnect topology and
topography

Methodological approach:
¢ Full coupling of dynamic (transient) behavior of
devices and interconnects
e Macromodel of interconnects derived from
distributed transient fields
("generalized impedance operator")

V

Physically-based full transient
predictive circuit simulation
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Map of signal propagation modes
in integrated circuits

(adapted from: Hasegawa et al,
IEEE Trans. on MTT, vol. 19, No. 11, 1971)
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Problem Definition

and Basic Approach

TEP

INSTITUTE FOR PHYSICS OF ELECTROTECHNOLOGY
MUNICH UNIVERSITY OF TECHNOLOGY

Interconnect Parasitics

can strongly affect the dynamic operation
of an integrated circuit:

*

*

*

influence on timing (delay times)

cross-talk between neighboring interconnects
inertia of electromagnetic field in surrounding matter
(“slow wave mode")

* damping effects in dielectric and conducting matter
( = dispersive distortion of waveforms and signals)
* wave / signal reflection and scattering on material

discontinuities

:>‘ analyze, understand and minimize electromagnetic parasitics |
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Physical Basis: Maxwell’s Equations
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Displacement
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Faraday‘s law

,Coulomb's
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Maxwell’s Equations in the QSA

Constitutive Equations: _
~ _ VxH
B=uH
D=¢E VxE
J=0E —

V-B
V-D

Maxwell equations:

—

j+§;j<

Initial conditions:

0B B(1,)=5, inQ,and Q,

ot

\
4

Interface conditions:
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Continuous Field Description
of Inductive Parasitics

Maxwell’s eqgs.:

material potentials:
relations: B =curl A .
l?zefz E:—grad@—%—‘?
B =uH dauge:

; =oE divA =0

curl % curl A + oA + e A= —o(grady + = grad ¢)

j: cE=—0 grad o — cA

potential flow eddy current

decoupling of
externally biased
and induced current
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Field Diffusion Approximation

| £
o

grad¢ | K| grad e |

|cA|<|A]

® dielectric relaxation time
5 K Tswitch

® no transmission of waves

1 - o w .
curl m curlA+ocA+e A= —o(grady + < grad ¢)

106

Dielectric
Quasi TEM

Slow Wave Mode

frequency [MHz]

102 10°
substrate resistance [Q2 cm]

10

OA 1 A7 —

with V(ocVyp) =0

J = Jpot T+ jeddy ;

Jpot = —0NVQ;  Jedqy = —0A
( = decoupling of effects )

e —
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Quasistationary Approximation 1
2 0.84 ”
Displacement current can be neglected %;ng
€0
0.2
D - d(eE _
9D S ( ) <cEotar . 00 561019, _2e9 3e-9
ot ’ c
material dielectric relaxation time
copper 1.5e-19 s
aluminum 2.5¢e-19 s
low doped Si (3 S/m) 3.5e-11s
glass (1e-14 to 1e-12 S/m) 45.. 4500 s 0 1e+09 1e+10 de+11 1e+12
frequency
Typical geometrical length << shortest wavelength encountered
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Potential Formulations for “Skin Effect” Problems
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The Three Basic Regimes

. . Thin highly conducting
n o= Itage- t- .
o soid sonductr Golid conductor | {eads sunk na bulk
% Fert Hxn,B-n cont. (no stranded conductor)
. 1, I,
curlH = .J,OB Ly Exn=0
curlE = - n v,
J=cE,B=pH
f - &> &
voltage-driven problems: u®) curent-driven problems: v, 1 |
B=curlA in Q, andQ, J = curl (T, +T) in Q v 1 1
Ez—a—A—grad@ in Q, H=T,+T-grad®
ot ot H=T, - grad® in Q,
t t t
modified vector potential: 04 1 3 __ l] : v foor
2T ot uc c
B=Vx4 andE =~ o1 with weak gauge V~(GZ)=O t t t
Dipl.-Phys. Peter Bohm Dipl.-Phys. Peter B6hm
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A,V-A-Method T-T,-®-Method
1o - 04 v
VX[7VXAJ+G—+O'grad—:0 1 =), d/ - O 1 =) 9/
' u ot ot Vx ;VXT +at(,uT)—at(,ugmd<I>)=—V>< ;Vx]}, —E(,uTo)
04 av . 3 .
Basw. —V[agﬂfgrad EJ =0 inQ, , Basic %V-(uTO +uT - 1grad®) =0 inQ,
cquations: 1 equations: 5
Vx[—Vx?lj:O inQ, =, V- (4l ~ ugrad®) =0 inQ,
U
Axi=0, v(1)= [o(7)dr on I’ - O,
0 J ®) . leTxﬁ=o,y(T0+T-gradq>).ﬁ=o on T, Ty
~ c
Axn=0, v(t)=0 on I =
Boundary ( )1 = Boundary Txi=0 on T,
conditions: Axi=0 or _VxAxii=0 on 3(Q.+Q,) conditions: ®=0 or u(T,-grad®)-ii=0 on T,.T,
- @ T,-grad®)-7i i T
Axn and lV)(Axﬁ are continuous on I, and ,Ll( o-grad ) " are continuous on L,
yri
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T-T,-® -Method (cont’d)

Vx(leT;):O in Q
o

Howto ~ B X
construct 7, ~ ToxA=Hsxn on T, (CTo) Ten
lo ==
;Vx oxn=0 on I'y and T, Current :
Biot-Savart-Field:
= p dl X7
How to get dp =Ml

H¢xn on I' |
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Transient Inductance Effects

on Circuit Level
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Description of Inductive Parasitics on
Circuit Level

Quasistatic approximation:

(ind) _ dlg
Ua =2pLapqr

Ja(7)-75(5)
Log = 4= Ja, Ja, ﬁd%das

with j,(7) = current basis functions

e Conventional approach in most interconnect analysis tools.

Problem: QSA does not allow for eigendynamics of
interconnects embedded in surrounding materials
(induced current distributions, damping, ...)
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Response Function on Circuit Level (1)

1. Separation of space and time variables:

Input: ,(Ima
Terminal currents I,(t)
at device contact Ci,
on interconnect part Q, Ik - I

o

= quasistationary current flow built up from basis functions

.7(]3(7?7 t) = Z;ka(F)[i"<\(/>

ko
where Jia = —0aVéra is calculated from div(oaVépa) = O
- 1 — 6
satisfying boundary conditions/ Jkadd@ = & — ~ ‘1]

Ja
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Response Function on Circuit Level (2)
2. Induced field and currents:
A7) = Yhoo f Apa (7t — 7)o (T)dT using

) ) e .., 04 1L A X 17 /=
basis solutions of “diffusion equation” —gke — ;TaAAka = Zkal()o(t)

= GO = Y e ha® = 0 [ At = Dia()dr
k,a

3. Generalized inductance matrix:

Magnetic field energy fff;d?’r includes inductively stored contribution W;,q

aw;,

with ©oind =52 5% 5 [* o Tka () Lo 15(t — ) Lg(7)dr

= NI (= 1 - -Dr>
where | Ly, 15(7) =/Q Jka(r)Alﬁ(TaT)d?)r=U_<]ka|e P7516)
« (63
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Implementation in

New Numerical Software Package
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The PDE-C++ Library Diffpack

* sophisticated tool for developing numerical software
with main emphasis on numerical solution of
partial differential equations

« collection of C++ libraries with classes, functions,
utility programs

* large collection of useful abstractions: vectors, matrices,
general multi-index arrays, strings, improved and simplified 1/O,
menu system, management of result files, coupling to
visualization tools, FEM modules, FDM modules, ...

* Advanced add-on tool boxes: adaptivity, input-/output-filters,
multilevel, mixed finite element method, parallelization,
domain decomposition, ...

Dipl.-Phys. Peter B6hm
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Postprocessing by MayaVi

File Visualize Options

1. DataVizManager
2. DataVizManager
3. DataVizManager |7

Configure Data | Show Pipeline

DataVizManager: 1. DataVizManager

Filename: bushar.j_tot_cg t00090009.000010. vtk

|

7

Shaw New Delete

ModuleManager: 1. ModuleManager

Config Scalar Legend
Config Vector Legend

Filters

1. Threshold ]
7

Configure Filter | Delete Filter |

1. ModuleManager |

Modules

1. SurfaceMap | J J_tot [A/m*2] (surface plot) / [Bf (cones)

2. SurfaceMap 1.03e+07 2.89+07 4.76e+07 6.626+07 8.48e+07 1.03¢+08

i [ (T im

Configure | Delete |

View: Front | Back | Left | Right | Top | Buttuml Isometric |
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o-Problem & Node Elements

A~ A~
7 N 7 N\

0.300 T

J,

Contact

= const

artificial

sources | —
X
J-static [A/m*2] reentrent corner gauge level 0

J-static [Aim~2] reentrent corner gauge levei 2
926 3.080405  6.760405  9.24e+05 1230405 1542406 108 4680405 9350405 1400405 LB7e05  2.342+05

[ i Em
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The Degrees of Freedom

Degree of freedom: The degrees of freedom are the moments of

the tangential component along each edge
fa-tds

for each edge é of K with unit tangent 7.
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Simplest edge element: Nedelec element with constant
tangential and linear normal component (CTLN)

* N, has constant tangential component on edge i
* no tangential component on all other edges

Dipl.-Phys. Peter Bchm
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Mixed FEM & Edge Elements

* Mixed finite element method allows for easy extension of library
by new kinds of vector-based elements
* Three vector components = three different elements on
local coordinate system level.
* Only one result field needed to represent the degree of freedoms,
the path integrals of the vector field along the edges.
* special mapping functionality responsible for:
unique edge direction, right path integration,
curl-conforming mapping.
» Combination of vector and scalar degree of freedom possible
= ,,double* mixed finite element method

Dipl.-Phys. Peter Bohm
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Example A,V-A Scalar Cut of Current Density

Contact 2 Terminal Voltage
example busbarl
100 +
>
= 807
5
<
G
>
60 T
Contact 1 —
J_tot [Alm"2] 1-0.55 4?0.7 10‘_5 10‘_3 10‘_,

2300406 1.54e+10  3.08e+10  4.63e+10  617e+10  7.77e+I0

[ [ time [s]

J_tot [A/m 2] at t=5e-65
1242408 1.800408 2.180+04 1.340407  2.670+407 4000407 5349407 6.679+07

g [ T

Dipl.-Phys. Peter Bohm Dipl.-Phys. Peter Bchm

J_tot [A/m~2] af t=5e-75
7.220407  1.0824+08

6.67e+05 J.64e+07

g
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Current-Driven Busbar
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Scalar Cut of Current Density
Skin Effect State Static State

o_tot [Aim 2] at t=de-5s J_tot [Adn*2] at t=de-35 J_fot [Adn*2] at i=1e-55 727t fe
7.27c+04  2.79e+06  5.50e+06  8.220+06  1.092+07  1.362+07 2930004 1040405 1682105 2.330+05 2978405 2620405 2070+07  413e+07  6.20e+07  8.27e+07  1.032+08 oJ_tot [Aim 2] at t=ie-3s

T Tl i Tt "l ‘- T T i e
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Example A,V-A

Terminal Current Self-inductance Resistance
example busbarl example busbarl example busbar]
1e+06 T T T 1e-07 T T T 0.5 T - :
seos | 0
60403 z 3
S s
40405 £ 3
o
2e-08 T 0.0
2e+05
L L L 0 L
0L - . 0 . T T ; g % s
%’ 0 0 o 10" 10° 10° 10 10° 10 10 10 10 10
time [s] time [s] time [s]
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Example T-T -®

Current-driven problem
solved using current potential
method:

Apply current ramp at contact,
find time-dependent inductance
and terminal voltage as
response.
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Terminal Current

exmaple viertelstab

1000 - €
800 1
<
= 600 |
k=i
o
£
© 400 1
200 1
0~ - - - : - -
107 10° 10° 10" 10° 10° 100" 10°
time [s]
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Example T-T-®

Terminal Voltage

example viertelstab

(5—=) terminal voltage

Inductance
example viertelstab
1.20e-08 T T T T T T 1.0e+02 T
1.0e+01
(>—© Omega_c & Omega_
Liseos [ gomny <o i Let00
= 1.0e-01
= 5]
Z 110608 1 | & 10002 f
- =
S 1003 F
1.05e-08 L 1.0e-04
i 1.0e-05 |
1.0¢-06 :
1.00e-08 = L L L L L L 7 6
107 10° 10° 10* 10° 107 10" 10 1010
time [s]

Dipl.-Phys. Peter B6hm
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Skin State

L[H]
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Three Different States

Inductance
example viertelstab

1.20e-08 T T T T T

/\

(3—©Omega_c & Omega_n
1.156-08 |=—=10mega_n

1.10e-08 + T

1.05e-08 /-

1.00e-08 - : : : : : :
10

100 10

time [s]

— Tim

Static
State

Eddy
Current

State

Dipl.-Phys. Peter B6hm
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Résumé of Numerical Tests

* Potential formulations are well suited to voltage- and
current-driven problems
(“2 1/2* different formulations possible).

* FE-simulations allow identification (and optimization) of
various distributed parasitic effects.

* Diffpack proves to be a powerful platform for building
a simulator framework for “real world“ industrial problems.

* Further enhancements of simulator easily possible due to
modular structure of the libraries.

Dipl.-Phys. Peter Bohm

Conclusions

Coping with the "wiring crisis‘ necessitates physically-based
macromodeling for predictive transient interconnect simulation
in RF circuits.

Accurate 3D-analysis of parasitic electromagnetic effects has to be
based on "tailored " distributed transient field model

(= problem-oriented reduced version of Maxwell's equations =
"field diffusion approximation‘, FDA).

Proper gauge of electromagnetic 4-potential decisive for numerically
robust treatment of "real world problems*
(current-driven # voltage-driven).

New concept of "impedance operator' (= generalized time-dependent
inductance matrix) seems adequate for proper transient interconnect
analysis on circuit level.

Implementation of method in new numerical simulation package based
on PDE-C++ DIFFPACK™ lJibrary and edge element discretization.




