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Motivation
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Problem Definition

and Basic Approach
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Interconnect Parasitics

can strongly affect the dynamic operation

of an integrated circuit:

∗ influence on timing (delay times)

∗ cross-talk between neighboring interconnects

∗ inertia of electromagnetic field in surrounding matter

(“slow wave mode”)

∗ damping effects in dielectric and conducting matter

( ⇒ dispersive distortion of waveforms and signals)

∗ wave / signal reflection and scattering on material

discontinuities

⇒ analyze, understand and minimize electromagnetic parasitics

Institute for Physics of Electrotechnology
Munich University of Technology

Dipl.-Phys. Peter Böhm

Physical Basis: Maxwell’s Equations

0

D
H J
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B
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D ρ

∂∇ × = +
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∇ ⋅ =

�

� �

�

�

�

�

No Magnetic
Charge

Ampere‘s law +
Displacement

current

Faraday‘s law

„Coulomb‘s
law“
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Maxwell’s Equations in the QSA

Maxwell equations:
Constitutive Equations:

Boundary conditions:

Initial conditions:

Interface conditions:

B H

D E

J E

E

H

0 on
0 on

E n

H n
nc

nc

0 on
0 on

c c n n

c c n n

H n H n

B n B n

0 0 n cin and B t B

0

D
H J

t

B
E

t
B

D
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Continuous Field Description

of Inductive Parasitics

Maxwell�s eqs��

div �D � � � �

div �B � �

curl �E � �

� �B
�t

curl �H � �j� � �D
�t

material

relations�

�D � � �E

�B � � �H

�j � � �E

potentials�

�B � curl �A

�E � �grad�� � �A
�t

gauge�

div �A � �

curl �
�
curl �A� � ��A� � ��A� ���grad�� �
�
grad ���

�j � � �E � �� grad�� � ��A

decoupling of

externally biased

and induced current

potential �ow eddy current
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Field Diffusion Approximation
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curl 1
µ

curl �A + σ �̇A + ε �̈A = −σ(grad ϕ + ε
σ

grad ϕ̇)

|
ε
σ

grad ϕ̇ |� | grad ϕ |

|
ε
σ

�̈A |� | �̇A |

• dielectric relaxation time
ε
σ
� τswitch

• no transmission of waves

∂ �A
∂t

−
1
µσ

∆ �A = −∇ϕ

with ∇(σ∇ϕ) = 0

�j = �jpot +�jeddy ;

�jpot = −σ∇ϕ ; �jeddy = −σ �̇A

( ⇒ decoupling of effects )

Institute for Physics of Electrotechnology
Munich University of Technology
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Quasistationary Approximation

eddy switch

ED
J E

t t

Displacement current can be neglected

Typical geometrical length << shortest wavelength encountered

material dielectric relaxation time
copper 1.5e-19 s
aluminum 2.5e-19 s
low doped Si (3 S/m) 3.5e-11 s
glass (1e-14 to 1e-12 S/m) 4.5 ...  4500 s

2 GHz
15 cm 20 GHz

200 GHz

910 9 9 9

09 10  11 12
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Potential Formulations for “Skin Effect” Problems

0nE

0nE

nBnH ,

,curlE

v
grad

t t

A
E

curlB A  and c n

c

in

in

curl 0J T T
grad0H T T cin

grad0H T nin

*
*1 1

with weak gauge   0

pot

A
A j

t

A

*
* and A

B A E
t

*
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The Three Basic Regimes
Voltage-driven
solid conductor

Current-driven
solid conductor

V1

V2

I1

I2

Ii

Ii

t

V

Thin highly conducting
threads sunk in a bulk

(no stranded conductor)

t

I

t

V

t

I

t

Ii

t

Iges
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A,V-A-Method
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Basic
equations:

Boundary
conditions:

Institute for Physics of Electrotechnology
Munich University of Technology

Dipl.-Phys. Peter Böhm

T-To-Φ-Method

( ) ( ) ( )
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1 1
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T-To-Φ -Method (cont’d)

0 c

0 cn outer
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Transient Inductance Effects

on Circuit Level
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Description of Inductive Parasitics on

Circuit Level

Quasistatic approximation�

U
�ind�

� �

P
� L��

dI�
dt

L�� � �
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R
��

R
��

�j���r���j���s�

j�r��sj

d
�
rd
�
s

with �j���r� � current basis functions�

�

� Conventional approach in most interconnect analysis tools�

Problem� QSA does not allow for eigendynamics of

interconnects embedded in surrounding materials

�induced current distributions� damping� � � ��
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Response Function on Circuit Level (2)

2. Induced field and currents:

�A(�r, t) =
∑

k,α
∫

�Akα(�r, t − τ)Ikα(τ)dτ using

basis solutions of “diffusion equation”
∂ �Akα

∂t
−

1
µσ

∆ �Akα = 1
σ
�jkα(�r)δ(t)

⇒
�j(�r, t) =

∑
k,α

�jkα(�r)Ikα(t) − σα

∫
�Akα(�r, t − τ)İkα(τ)dτ

3. Generalized inductance matrix:

Magnetic field energy
∫

�A ·�jd3r includes inductively stored contribution Wind

with
dWind

dt
=

∑
k,α

∑
l,β

∫ t
−∞

Ikα(t)Lkα,lβ(t − τ)İlβ(τ)dτ

where Lkα,lβ(τ) =

∫
Ωα

�jkα(�r) �Alβ(�r, τ)d3r =
1

σα
〈�jkα|e

−Dτ�jlβ〉
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Implementation in

New Numerical Software Package
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The PDE-C++ Library Diffpack

• sophisticated tool for developing numerical software
  with main emphasis on numerical solution of 

partial differential equations
• collection of C++ libraries with classes, functions, 
  utility programs
• large collection of useful abstractions: vectors, matrices,
  general multi-index arrays, strings, improved and simplified I/O,
  menu system, management of result files, coupling to 
  visualization tools, FEM modules, FDM modules, ...
• Advanced add-on tool boxes: adaptivity, input-/output-filters,

multilevel, mixed finite element method, parallelization, 
  domain decomposition, ...

Institute for Physics of Electrotechnology
Munich University of Technology

Dipl.-Phys. Peter Böhm

Postprocessing by MayaVi
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To-Problem & Node Elements

Node elements &
current driven problems

I(soll) I(gl=0) I(gl=2)
Contact 1 200 A 180 A 200 A
Contact 2 100 A 60 A 100 A
Contact 3 200 A 100 A 200 A
Contact 4 100 A 90 A 100 A
Iterations (CG) 112 328

artificial
sources

ContactJ const≈
�

Institute for Physics of Electrotechnology
Munich University of Technology
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The Degrees of Freedom

ˆ

The degrees of freedom are the moments of
the tangential component along each edge

ˆ ˆ                            

ˆˆ ˆfor each edge  of  with unit tangent .
e

u d s

e K

τ

τ

⋅�

Degree of freedom:

Simplest edge element: Nedelec element with constant
tangential and linear normal component (CTLN)

•       has constant tangential component on edge i
• no tangential component on all other edges

iN
�
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Mixed FEM & Edge Elements

• Mixed finite element method allows for easy extension of library 
  by new kinds of vector-based elements

• Three vector components  three different elements on 
  local coordinate system level.
• Only one result field needed to represent the degree of freedoms,

         the path integrals of the vector field along the edges.
• special mapping functionality responsible for:
   unique edge direction, right path integration, 
   curl-conforming mapping.

• Combination of vector and scalar degree of freedom possible
„double“ mixed finite element method
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Example A,V-A
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Scalar Cut of Current Density
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Scalar Cut of Current Density
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Current-Driven Busbar

Skin Effect State Static State
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Example A,V-A
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Example T-To-Φ
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applied terminal current

Current-driven problem
solved using current potential
method:

Apply current ramp at contact,
find time-dependent inductance
and terminal voltage as
response.
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Three Different States
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Résumé of Numerical Tests

• Potential formulations are well suited to voltage- and 
  current-driven problems
  (“2 1/2“ different formulations possible).

• FE-simulations allow identification (and optimization) of 
  various distributed parasitic effects.

• Diffpack proves to be a powerful platform for building
  a simulator framework for “real world“ industrial problems.

• Further enhancements of simulator easily possible due to
  modular structure of the libraries. 

Conclusions

∗ Coping with the ”wiring crisis“ necessitates physically-based
macromodeling for predictive transient interconnect simulation
in RF circuits.

∗ Accurate 3D-analysis of parasitic electromagnetic effects has to be
based on ”tailored“ distributed transient field model
(= problem-oriented reduced version of Maxwell’s equations =
”field diffusion approximation“, FDA).

∗ Proper gauge of electromagnetic 4-potential decisive for numerically
robust treatment of ”real world problems“
(current-driven �= voltage-driven).

∗ New concept of ”impedance operator“ (= generalized time-dependent
inductance matrix) seems adequate for proper transient interconnect
analysis on circuit level.

∗ Implementation of method in new numerical simulation package based
on PDE-C++ DIFFPACKTM library and edge element discretization.


