
mon to all rows, has to rise appropriately and is controlled by
the winner row. This in turn is only possible, if the gate voltage
of the source follower n

3win
, being also the output voltage LA

win
,

rises highest. The mechanism works independent of the abso-
lute value of C

win
 and provides the self-adaptability of the maxi-

mum-gain region. A gain of about 20-50 over a wide range of
absolute C

win
 input voltages is thus achieved. The WTA-circuit

implemented in the test-chip is of O(R) complexity and needs
just 17 transistors per row. We adopt 5 stages of the common-
source WTA-configuration proposed by Lazzaro et al. [5]. This
5-stage WTA amplifies winner-loser distances by voltage-cur-
rent-voltage transformations and provides a further strong am-
plification of the winner-loser differences. The final decision
circuit consists of inverters with an adjusted switching thresh-
old. It generates a 1 for the winner row and 0 for all other rows.
  A newly proposed bank associative memory architecture is
shown for the case of 4 banks in Fig. 4. This system has 4 local-
winner-search units and a global minimum-distance-winner se-
lection circuit. A local-winner is decided by fully-parallel mini-
mum distance search in each bank in parallel. Each bank con-
sists the associative memory unit, a priority encoder (PE), a
circuit for digital-distance calculation of the local winner. The
minimum-distance-winner selection circuit determines the glo-
bal winner among the local-winners and outputs the global
winner’s bank number as well as bank-internal address.

3. Chip-fabrication and Measurement Results
  The Hamming-distance test chip is designed in 0.6µm CMOS
with 3-metals and contains 32 reference words with 768 bit
binaries (Fig. 5). Design area is 9.75mm2 and a high perfor-
mance of < 70nsec minimum distance search at low-power dis-
sipation of 43mW are achieved. The Manhattan-distance test
chip was designed in 0.35µm CMOS with 3-metal layers and
contains 128 reference words with 16 binaries each 5-bit long.
Fig. 6 (a) shows the photomicrograph of the fabricated Man-
hattan-distance test chip. Fig. 6 (b) depicts the measured aver-
age nearest-match times of this chip as a function of the dis-
tance between winner and input-data word. The data for winner
to nearest-loser distances of 1 and 10 bit are plotted. Some of
the chosen row combinations of winner and nearest loser deliv-
ered unreliable match results for large winner-input distance.
However, this causes no practical problem because vector-quan-
tization (VQ) simulations of real images confirmed, that almost
all winner-input distances are less than 50bit. In the practical
case with optimized codebook winner patterns with larger win-
ner-input distance are in general expected to be very seldom.
Therefore, the measured performance of the designed test-chip
is already sufficient for VQ application with a nearest match
time < 140nsec.  Taking into account that the area for the input-
pattern circuit remains the same, we extrapolate an area of about
17.2mm2 and a power-dissipation of about 180mW for a near-
est Manhattan-distance-search memory with 256 reference pat-
terns in 0.35µm CMOS technology. If we furthermore extrapo-
late the test-chip data to a state-of-the-art 0.13µm CMOS tech-
nology with 1.2V power-supply, we expect an integration area
of about 6.4 mm2 and a power dissipation of about 71.7mW.
Table 1 shows the data of fabricated test chips for minimum
Hamming/Manhattan distance search.
  Bank-based associative memories have been designed in
0.35µm CMOS technology and the layout of a 4-bank associa-
tive memory for minimum Manhattan distance search with 256

1. Introduction
  The pattern-matching function, which finds the nearest-match
between an input-data word of W bit length and a number R of
reference-data words, is important for realizing recognition, rout-
ing calculation at network routers, as well as data/image com-
pression by vector-quantization. The nearest-match or winner is
defined by the minimum with respect to a distance measure such
as the Hamming (data strings, voice patterns, black/white pic-
tures) and the Manhattan (gray-scale or color pictures) distance.
Conventional partially-parallel minimum distance-search hard-
ware based on multiple SRAMs and external distance calcula-
tion plus winner-take-all circuitry (WTA) [1] has drawbacks with
respect to integration density and short nearest-match times. To
overcome these drawbacks, we have proposed a dedicated mixed
analog-digital fully-parallel associative-memory architecture for
nearest Hamming/Manhattan-distance search [2,3]. Designed
minimum Hamming/Manhattan distance search associative
memories have high-performance at low-power dissipation. A
bank-based architecture is also proposed for enabling minimum
distance search with large reference pattern number.

2. Associative Memory Architecture
  Figure 1 shows a block diagram of the compact associative
memory with fast fully-parallel match capability according to
the Hamming/Manhattan distances. The concept for the memory-
field is illustrated in Fig. 2. Digital k-bit subtraction and abso-
lute-value calculation units (UC) compare the W binaries, each
with k-bit, in all rows of the memory field in parallel with the
reference data. The k-bit subtraction and absolute-value-calcu-
lation circuit is realized on the basis of a ripple carry adder cir-
cuit. In the test chip design, we use a newly devised compact
circuit to minimize its design area. The circuit diagram of the
winner line-up amplifier (WLA) is shown in Fig. 3. The WLA
achieves a large regulation range for feedback stabilization and
eliminates the inefficient possibilities of under- or over-regula-
tion by a maximum-gain region which self-adapts to the winner
input C

win
. The signal follower provides the necessary high driv-

ing current for scaling to an increased number of reference pat-
terns R. Low power dissipation is achieved by an individual
power regulation from the signal-regulation units for each in-
put-signal source. The transistor-count is only 6 per row. A modi-
fied version of the fast minimum circuit proposed by Opris et al
[4] is applied for combined feedback generation and distance
amplification. The minimum function is used in the feedback
loop and an intermediate node in each row circuitry is used for
the distance-amplified WLA-output LA

i
.

  Distance amplification and self-adaptation of the maximum-
gain region work as follows: Since the winner-row's WC-output
C

win
 is lowest, transistor p

3win
 has the largest current-source ca-

pability, which must be balanced by the current-sink capability
of transistor n

2win
. Thus the gate voltage F

a
 of n

2win
, which is com-
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Abstract
  Fully-parallel associative memories for minimum Hamming/Manhat-
tan distance search have been designed in 0.6µm/0.35µm CMOS with
3-metal layers. These are suitable for all associative-memory applica-
tions which need real-time processing, compact hardware, and low-
power dissipation. The performances of designed test chips are about
equivalent to a 32 bit computer with 1.34TOPS (Hamming) and
160GOPS (Manhattan). Furthermore, a bank-type associative memory
architecture for minimum distance search with large reference number
is proposed and test chips have been designed in 0.35µm CMOS tech-
nology.
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reference pattern number is shown as an example in Fig. 7 (a).
Table 2 shows performance data of designed 2/4 bank associa-
tive memories.

4. Conclusion
  Associative memory architecture for fully-parallel minimum
distance search is proposed and test chips are designed in 0.6µm
(Hamming) and in 0.35µm (Manhattan) CMOS technologies.
The 9.75mm2 Hamming test-chip with 32 reference patterns
and 768 equivalent bit per pattern, has a performance of <
70nsec nearest-match time, equivalent to a 32bit computer with
150GOPS/mm2, at a power dissipation of 43mW. The 8.6mm2

Manhattan test-chip with 128 reference patterns and 496 equiva-
lent bit per pattern, has a performance of < 190nsec nearest-
match time, equivalent to a 32bit computer with 20GOPS/mm2,
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Fig. 1: Associative memory architecture. Fig. 2: Memory field for minimum Manhattan

Fig. 3: WLA circuit.

Fig. 4: Bank-type associative memory architecture.

Fig. 5: Minimun Hamming distance search associative memory.

Fig. 6: Minimun Manhattan distance search associative memory.

reference patterns Manhattan dist-

Table 1: Performance data of designed associative

distance search.

(a) chip photo (b) measured average search times

(a) chip photo (b) measured average search times

Table 2: Characteristics of the bank-based
associative memories.

Fig. 7: Layout image of the 4-bank, 256

ance search memory.

memory test chips.

0.6  m CMOS

Hamming
Memory Field

Search Range
Winner-Search
Time (Measured)

Power Dissipation

Technology

Supply Voltage

32 x 768 128 x 80

0 - 400 bit
9.11 mm

0.35  m CMOS

3.3V 3.3V
43 mW 91 mW

< 70 nsec < 190 nsec

Area

Performance 1.34 TOPS 160 GOPS

2

Distance Measure Manhattan (5 bit)

8.6 mm
0 - 480 bit

µ µ
2

at a power dissipation of 91mW. These data are sufficient for
application in high-performance mobile real-time systems such
as systems for image compression by vector-quantization.
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