Associative Memory for High-Speed Nearest Hamming/Manhattan Distance Search with Large Reference Pattern Number

Yuji Yano, Tetsushi Koide, and Hans Jürgen Mattausch

Associative Memory Functionality

Associative Memory Architecture

Minimum Hamming distance search for pattern recognition with binary (black/white) images
-Manhattan distance for many applications with color/gray-scale images

Finding the nearest match pattern among R reference patterns Important for pattern recognition (Hamming) and codebook based data compression (Manhattan).
-K-bit digital subtractor and absolute-value calculator are needed to realize the Manhattan-distance-search.

- All unit comparators and all word comparators calculate the distance between search word and stored word in parallel.
K-bit subtractors and absolute value calculators (UC, WC) within the memory fieldA fast and static analog-current-encoding of the word-comparison results.
(3) Improved self-adapting regulation circuit to the point of the largest winner-loser distance amplification for all search cases.
(4) Winner search circuit (WLA, WTA) with only $O(R)$ complexity.

- Each stage amplifies the differences by a voltage-currentvoltage transformation.
- Enough amplification magnitude (by a factor 20-50)
- The current on $\mathrm{C}_{\text {win }}$ is the smallest and the voltage of $\mathrm{C}_{\text {win }}$ is the lowest.
- The current-source capability of $\mathrm{p}_{3 \text { win }}$ is the largest and the voltage of $L A_{\text {win }}$ is the highest.
- The feedback voltage of F is approximately equal to that of $\mathrm{C}_{\text {win }}$.
- For larger winner-input distance the voltage F becomes higher and $\mathrm{n}_{1 \mathrm{i}}$ have larger current-sink capability.

Bank-Type Associative Memory

Associative Memory Chip

- $9.11 \mathrm{~mm}^{2}$ test chip designed in $0.6 \mu \mathrm{~m}$ CMOS technology (Hamming) and $7.49 \mathrm{~mm}^{2}$ test chip designed in $0.35 \mu \mathrm{~m}$ CMOS technology (Manhattan).
- High-speed minimum distance search at < 70ns (Hamming) and at < 190ns (Manhattan).
- Low power dissipation of $<43 \mathrm{~mW}$ (Hamming) and of $<91 \mathrm{~mW}$ (Manhattan).

- Each of the 4 banks searches its local winner independently.
- The minimum distance winner selection circuit determines the global winner among 4 local winners.
- Each bank has the circuitry (PE, tree adder, digital distance output port) for digital calculation of the local winner.

- $11.8 \mathrm{~mm}^{2}$ and $26.5 \mathrm{~mm}^{2}$ test chips for bank-type associative memories are designed in $0.35 \mu \mathrm{~m}$ CMOS technology with 3 metal layers.
- 2/4 bank associative memories have the function of minimum Manhattan distance search among 128/256 reference patterns.
- Each chip has high performance at low power dissipation.

Conclusions

- Associative memories without and with (for large pattern number) bank-type architectures are proposed for fully-parallel minimum distance search.
- Test chips are designed in $0.6 \mu \mathrm{~m}$ (Hamming) and in $0.35 \mu \mathrm{~m}$ CMOS technologies.
- Measured data indicates sufficient performance for application in mobile real-time systems.

