Workfunction Tuning for Single-Metal Dual-Gate With Mo and NiSi Electrodes

K.Sano, M.Hino, and K.Shibahara

Research Center for Nanodevices and System Hiroshima University

Motivation

poly-Si Gate

Gate depletion effect

-Effective oxide thickness increase

 Metal Gate No gate depletion effect

Dual Metal CMOSFET

Complicated fabrication process

Solution

Issue

Dual-workfunction gates with single metal

Properties of Metal Materials

Workfunction Tuning Techniques

Mo Gate

-N⁺ Implantation T.Amada et al., Mat.Res.Soc. 2002 Q.Lu et al., Symp. on VLSI 2001 K.Shibahara, 2003 COE Workshop

-Solid phase diffusion from TiN Film

R.J.P. Lander et al., Mat.Res.Soc. 2002 M.Hino et al., SSDM 2003

NiSi Gate

-Impurity pileup by snowplow effect W.P.Maszara et al., IEDM 2002 J.Kedzierski et al., IEDM 2002 & 2003

Targets

Mo : Integration into MOSFET fabrication NiSi : Optimization of silicidation condition

for pileup formation

Mo Gate

Solid-Phase Diffusion from TiN Film

Workfunction shift

This Work

steps

Diode	MOSFET
-0.46eV	~0eV

• FET fabrication with modified process

RTA : Solid-phase diffusion Temperature : 800°C Time: 1 min

Nitrogen out-diffusion from Mo gate? • Nitrogen Profile in Mo MOS structure

expected measured X Mo FET 1.0 1.5 Gate Voltage VG [V]

TiN/Mo FET

[K.Shibahara, 2003 COE Workshop]

Modified Mo Gate MOSFET Fabrication Process

MOSFET I_D-V_G Characteristics

NiSi Gate

Workfunction adjustment methods for CMOSFET

Selective Out Diffusion
 Nitrogen pileup formation
 Cover deposition and patterning

Annealing for out diffusion

 Selective Diffusion
 Deposition and pattering of nitrogen diffusion source

Annealing for diffusion, pileup formation and S/D activation

Comparison of silicide materials

 TiSi₂ Original salicide material Replaced by CoSi₂ because of severe narrow line effect
 CoSi₂Currently most popular for salicided CMOS Superior thermal stability than NiSi
 NiSi Small Si consumption Lower contact resistance Poor thermal stability Suitable for sub-90nm CMOS with low temperature BEOL
and
Candidate for workfunction tunable gate metal

Impurity pileup by snowplow effect in Full-NiSi Gate

Drive away impurities in Si downward when full-silicidation

poly-Si

NiSi Gate MOS diodes Fabrication Process

NiSi Gate MOS Diode C-V Characteristics Normalized Capacitance 450 °C Silicidation temperature 500 °C 400,450°C 500°C ΔV_{FB} : 0.34V 0.34V ~0V V_{FB} -1.5 -1 -0.5 0 0.5 -2 Gate Voltage [V]

V_{FB} increase by lower silicidation temperature

Sb depth profiles in NiSi MOS structure

Conclusions

- Nitrogen solid-phase diffusion into Mo gate from TiN
- Nitrogen pileup and workfunction shift were reversible process.
- Additional thermal treatment gave rise to nitrogen redistribution.

MOSFET fabrication :

- Procedure must be constructed to avoid the pileup deformation.
- Impurity pileup by snowplow effect in NiSi gate
- Snowplow effect was enhanced by lower temperature at silicidation.

Acknowledgements

This work is partially supported by <u>STARC</u>(Semiconductor Technology Academic Research Center)