A wireless chip interconnect using resonant coupling between spiral inductors

Mamoru Sasaki. Daisuke Arizono and Atsushi lwata

Graduate School of Advanced Sciences of Matter, Hiroshima University

1-3-1 Kagamiyama, Higashi-Hiroshima-shi 739-8530, Japan Phone: +81-824-24-7641, Fax: +81-824-22-7358 E-mail: iwa@dsl.hiroshima-u.ac.jp

massively parallel
2D vision information

- processors
- memories
- analog circuits
- RF interface

System LSI

However.

- considerable time to develop
- considerable low yield

System-in-Package

large aspect-ratio vias

Capacitor coupling Wireless interconnect

heat dissipation issue

LWI: Local Wireless Interconnect

- spiral inductors
- resonant coupling

Resonance property enlarges received signal

However, · · ·

VDD.

CMP

Reference-voltage generator

Simulation result of the whole circuit

TSMC 0.25 μ m mixed CMOS technology

Options: Thick top metal MiM capacitor

Supply voltage VDD : 2.5V

1Gb/s/channel at 9mW/channel

Transmitter:6mW/channel Receiver :3mW/channel

Chip layout

Conclusions

- Interconnect scheme between the stacked chips based on resonant coupling
- 1Gb/s/channel at 9mW/channel from SPICE simulation

Future researches for multi-channel implementation

- phase control of the timing signal
- size-reduction of the spiral inductor
- less power consumption