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Abstract  
 
The detrimental effects of interconnect inductance on 
signal propagation have been widely discussed. This 
papers describes innovative design concepts that utilize 
the interconnect inductance to benefit the design of 
high-speed circuits. Specific examples are illustrated. 
 
I. Introduction  
 
As the operational frequency of an integrated circuit 
increases beyond GHz, the inductive impedance 
associate with an on-chip wire becomes comparable or 
dominant over the resistive component. This could result 
in additional signal distortion, propagation delay, and 
cross-talk noise [1, 2]. Hence, the general belief is that 
inductance, L, is detrimental to interconnect performance, 
and should be minimized. 
 
Although the extraction of L associated with a wire 
randomly placed in a chip is complicated by many 
factors [3]. L can be controlled if there is a dedicated 
current return path as in co-planar strip line, or 
micro-strip line. In such an environment, the wire L can 
actually provide a new design dimension. This paper 
describes specific examples of applying wire L in 
high-speed circuits. 
 
II. Near Speed-of-Light Propagation of Electrical 
Signal 
 
As a digital signal propagates down a long wire, the 
quality of the signal is degraded resulting in excessive 
delay or inter-symbol interference. To understand the 
reasons, the power spectral density of a 500 ps digital 
pulse is compared with the intrinsic frequency 
characteristics of a minimum-sized wire in Fig. 1. The 
digital signal is broadband in nature, while the wire 
characteristic changes dramatically over this frequency 
band. At lower frequencies, the wire behaves as a 
distributed R-C network. In this regime, signals travel 
very slowly by diffusion and undergo frequency 
dispersion. As the frequency increases, L begins to 
dominate over R, and the wire behaves more as a L-C 
waveguide. The high-frequency L-C regime allows for 
propagation of an electromagnetic wave; consequently, 

the peak velocity is the speed-of-light in the dielectric 
surrounding the wire. 
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Figure 1  – Spectral power density of a typical digital 
pulse, and the signal propagation velocity versus 
frequency along a minimum-sized wire. 
 
Fig. 1 suggests that a high-speed system can be built by 
taking advantage of the wave nature of wire [4]. Firstly, 
it is necessary to eliminate the low-frequency portion of 
the signal that lags behind. This can be achieved by 
modulating the digital data with a sufficiently 
high-frequency carrier, and as a result, concentrating all 
the signal power in the L-C regime. Secondly, the 
crossover frequency between the R-C and L-C regimes 
can be shifted into the single GHz range by explicitly 
emphasizing L and reducing R. In this frequency range, 
simple RF circuits can be designed to transmit and 
receive these modulated signals. Fig. 2 illustrates the 
impact of using modulated signaling in combination with 
an optimized low-loss wire to support high-speed 
transmission. The signal spectral components now lie 
predominantly in the high-speed L-C regime. This 
system has been demonstrated in a TSMC 0.18-µm 
CMOS technology with six levels of Al/Cu wiring and 
SiO2 dielectric. The transmitter, receiver, and all other 
components are integrated on-chip. Fig. 3 shows 
as-measured input and output waveforms propagating 
over a distance of 2 cm.  Excluding the delay needed 
for driving signals on and off the chip for testing and 
measurement., an average delay of 283ps is obtained, 
which corresponds to an effective signal propagation 
speed of nearly one-half the speed of light in SiO2. 
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Figure 2 – Spectral power density of a modulated digital 
pulse, and the signal propagation characteristic of an 
optimized low-loss wire. 

Figure 3 – Measured input and output waveforms of the 
modulated signal transmission system. 
 
III. 10 GHz Standing Wave Clock 
 
Global clock distribution has become increasingly 
difficult for multi-GHz microprocessors. Timing 
uncertainty must reduce with clock period, but skew and 
jitter for conventional H-trees are proportional to latency, 
which does not scale with clock period [5]. 
 
The global clock network in Fig. 4 distributes a 10 GHz 
clock through a grid of coupled standing-wave 
oscillators (SWOs) [6]. The SWO, as shown in Fig. 5, is 
analogous to a differential L-C oscillator where the gain 
and tank are distributed. These SWOs are coupled 
together and sustain synchronous, sinusoidal standing 
waves across the chip. A single clock source coupled into 
one SWO injection-locks the entire grid. Clock buffers 
recover a digital clock and drive the local circuits. This 
coupled SWO clock network has been prototyped in a 
TSMC 0.18-µm CMOS technology. The test chip 
integrates eight coupled SWOs. The grid injection locks 
to an external clock from 9.8 GHz to 10.5 GHz (6.4% 
locking range). The clock skew and jitter are measured 
to be less than 1ps. 

 
Figure 4 – 10GHz global clock network with coupled 
standing wave oscillators. 
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Figure 5 – Schematic of a standing wave oscillator. 
 
5. Conclusions 
 
In high frequency operations, wire inductance is not 
necessary undesirable, but can be exploited for novel 
design concepts. Other design examples that exploit the 
distributive behavior of a wire at high frequencies 
include a 23 GHz distributed amplifier and a 16 GHz 
distributed oscillator [7]. 
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Coplanar Configuration Microstrip Configuration

• Multiple Metal Levels
• Shielding from Substrate/Underlying
Wires

• Resistance Scales with Width at
High Frequencies

• Only Single Metal Level
• Coupling to Substrate/Underlying Wires
• Slow-wave Effects
• Resistance is Independent of
Width at High Frequencies

Coplanar versus Microstrip
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Digital Signal over Global Wires
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Frequency analysis of digital pulse over interconnect.
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Digital signals are broadband.
• Most power of the digital 

pulse is concentrated in 
slower, low-frequency regime
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Length of line = 1 mm

Digital Signal over Global Wires

Digital signals are broadband.
• Most power of the digital 

pulse is concentrated in 
slower, low-frequency regime
.

• But, portion of signal that 
contributes to sharp rise time 
is in the higher frequency 
regime.

Frequency analysis of digital pulse over interconnect.
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Modulate digital signals with a high-frequency carrier to

push signal spectrum into LC-regime.

Normal Digital Pulse. Modulated Digital Pulse.

Signaling in the LC Regime

INPUT:
Digital Data

RF Carrier

Interconnect

Sense
Amplifier

OUTPUT:
Digital Data

RF Carrier

tdiel

tmetal

w

Cross-section:
tmetal = 2 m

frequency = 10 GHz
Composition:  Al, SiO2

Need to minimize loss over interconnect, while using reasonable dimensions.

Contours of loss [dB/mm]

2 4 6 8

2

4

6

8

10

12

14

16

t
diel

 (Dielectric Thickness) [µm]

w
 (

S
ig

na
l W

ire
 W

id
th

) 
[µ

m
] 0.20.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.70.80.9

1

Optimization of Low Loss Wires

  1M  10M 100M   1G  10G 100G
−30

−20

−10

  0

Frequency [Hz]

N
or

m
al

iz
ed

 P
ow

er
 S

pe
ct

ru
m

 [d
B

]

0.001

0.01

0.1

1

N
or

m
al

iz
ed

 V
el

oc
ity

 w
.r

.t.
 c ox

  1M  10M 100M   1G  10G 100G
−30

−20

−10

  0

Frequency [Hz]

N
or

m
al

iz
ed

 P
ow

er
 S

pe
ct

ru
m

 [d
B

]

0.001

0.01

0.1

1

N
or

m
al

iz
ed

 V
el

oc
ity

 w
.r

.t.
 c ox

Conventional Approach --
Signal power is distributed over slow
RC regime.
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– Wave characteristics
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Standing Waves

Standing wave

Standing Waves

– Wave characteristics
• Phase is constant with position (with 180º discontinuities)
• Amplitude varies sinusoidally with position

Standing wave

Standing Waves on Lossy Wires
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Phase Noise Comparison
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Conclusions

• At high frequencies, interconnect 
inductance can no longer be ignored

• Extraction of inductance in a typical IC 
environment is extremely difficult

• Only a small number of interconnects exhibit 
inductive behavior

• With dedicated return path, interconnect 
inductance can be controlled & optimized

• Incorporating inductance into distributed 
designs offer new opportunities


