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Abstract 
Inter/intra-chip wireless interconnection technology 

using fractal antennas for ultra-wide-band (UWB) signal 
transmission in Si was demonstrated. Gaussian 
monocycle pulse whose pulse width was 100 ps and 
center frequency was 15 GHz could be transmitted 
horizontally and vertically in Si. Sierpinski carpet dipole 
antennas showed superior UWB characteristics for 
transmission of Gaussian monocycle pulse without 
distortion in 10 mm distance. 

1. Introduction 
In order to overcome signal delay time in global 

interconnects due to parasitic resistance and capacitance, 
a concept of wireless interconnection using Si integrated 
antennas operating at microwave frequency has been 
proposed. [1-4] The channel capacity of information is 
proportional to the bandwidth of the signal according to  
Shannon’s theorem, indicating that ultra-wideband 
(UWB) communication is the most suitable technique to 
transmit a large amount of data from ULSI to ULSI.  

In this study, the UWB characteristics of Si integrated 
antennas are investigated.  

2. Experimental 
A concept of inter/intra-chip wireless interconnects is 

shown in Fig. 1. P-type Si (100) wafers with resistivities 
from 10 Ω-cm to 2.29 k Ω-cm were used as substrates. 
The surface of Si was oxidized to form 0.3 µm thick field 
SiO2. 1 µm thick aluminum was deposited on the SiO2 
layer by direct current magnetron sputtering and the 
antenna patterns were formed by electron beam 
lithography. 10 µm wide aluminum dipole antennas were 
fabricated on SiO2 as shown in Fig. 2. Antenna lengths L 
of half wavelength dipole antennas changed from 1.0 to 
6.0 mm and the distance between transmitter and receiver 
antennas changed from 1.0 to 10.0 mm. Fractal antennas 
such as Sierpinski carpet dipole antenna were fabricated 
as shown in Fig. 3. [5] The feature sizes W/L of the 
antennas are 1/1.9 mm, 2/3.8 mm and 4/7.6 mm, 
respectively. The gap of the dipole is 70 µm. Distances 
between transmitter and receiver antennas were ranging 
from 5.0 mm to 30.0 mm.  

A wafer level measurement set-up for scattering 
parameter in frequency domain is shown in Fig. 4. 
S-parameter measurement was carried out in the 
frequency range from 6 to 26.5 GHz. A measurement 
set-up for the transient response of Gaussian monocycle 
pulses is shown in Fig. 5. 

3. Results and Discussion 
Dependence of Si substrate resitivity on measured 

return losses of dipole antennas as a function of frequency 
is shown in Fig. 6. The return losses of half wavelength 

dipole antennas with Si resistivities of 79.6 and 2290 
Ωcm were larger than -10 dB in all frequency range 
except at 11 GHz which was a resonance frequency of 
antenna length of 6 mm as shown in Fig.6(a). On the 
other hand, Sierpinski carpet dipole antenna with Si 
resistivities of 79.6 and 2290 Ωcm showed larger return 
loss in the frequency range from 6 to 19 GHz but much 
lower return loss in the frequency range from 19 to 26 
GHz as shown in Fig.6(b). As a result, optimum 
frequency spectrum of Gaussian monocycle pulse 
transmission was obtained as shown in Fig. 6(c). 

Effect of horizontal distance between antennas on 
peak to peak voltage of Gaussian monocycle pulse for 
Sierpinski carpet dipole antennas is shown in Fig.7. The 
pulse amplitude is inversely proportional to the horizontal 
distance. Effect of Si substrate resistivity on Gaussian 
monocycle pulse amplitude of Sierpinski carpet dipole 
antenna is shown in Fig.8. The amplitude increases 5-6 
times with increasing the resistivity from 10 Ωcm to 79 
Ωcm.  Effect of Si substrate thickness on the vertical 
transmission of Gaussian monocycle pulse for Sierpinski 
carpet dipole antennas is shown in Fig.9.  The pulse 
amplitude decreased linearly with increasing the vertical 
distance to 3 mm in Si so that the vertical attenuation rate 
was  -0.27 mV/mm. UWB transmitter and receiver 
circuits with integrated dipole antennas were designed 
and fabricated by use of 0.18 µm CMOS technology as 
shown in Figs. 10 (a) and (b). 

4. Conclusion 
Inter/intra-chip wireless interconnection in Si using 

fractal antennas for UWB signal transmission was 
demonstrated for the first time. Gaussian monocycle pulse 
whose pulse width was 100 ps and center frequency was 
15 GHz could be transmitted horizontally and vertically 
in Si . The received pulse amplitude was improved 5-6 
times by increasing the resitivity of Si from 10 Ωcm to 79 
Ω cm. It is found that Sierpinski carpet dipole antenna 
showed superior UWB characteristics for transmitting and 
receiving Gaussian monocycle pulse without distortion. 
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Fig.2. A plan-view of transmitting and 
receiving dipole antennas on a Si
substrate. 
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Fig. 1 A concept of inter-chip wireless signal 
transmission in stacked chip packaging. 

Fig.3. Configuration of Sierpinski
carpet dipole antenna.W=1-4 mm, 
L=1.9-7.6 mm, Gap=70 µm.
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Fig. 5. Wafer level measurement set-up for inter-chip signal 
transmission characteristics in time domain. Gaussian 
monocycle pulse is formed by impulse forming networks 

Fig.4. Wafer level frequency domain measurement set-
up for  dipole antennas fabricated on Si wafers.
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Fig. 6. Dependence of Si substrate resitivity on measured return losses (S11) of dipole antennas fabricated on
oxidized Si substrates as a function of frequency. (a) Half wavelength dipole antennas. (b) Sierpinski carpet dipole
antennas. (c) Fourier transform of Gaussian monocycle pulse for Sierpinski carpet dipole antenna.
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Fig.7 Effect of horizontal distance between 
antennas on peak to peak voltage of Gaussian 
monocycle pulse for Sierpinski carpet dipole 
antennas.

Fig.8. Effect of Si substrate resistivity on the 
horizontal transmission of Gaussian 
monocycle pulse in Si with Sierpinski carpet 
dipole antennas.

Fig.9. Effect of Si substrate thickness on the 
vertical transmission of Gaussian monocycle 
pulse in Si with Sierpinski carpet dipole 
antennas.

UWB TransmitterUWB Transmitter  
without MAC

VCO
÷2 LFSR

DELAY

8 to 1 
Multiplexer Short and 

control pulse 
Gen.

2 to 1 
Multiplexer

3.688 mm

1.365 mm
Antenna

UWB TransmitterUWB Transmitter  
without MAC

VCO
÷2 LFSR

DELAY

8 to 1 
Multiplexer Short and 

control pulse 
Gen.

2 to 1 
Multiplexer

3.688 mm

1.365 mm
Antenna

2.9mm

1.
4m

m

2.9mm

1.
4m

mMonocycle 
Pulse Generato(a)                                                 (b)

Fig.10. Photomicrographs of UWB circuits integrated with dipole antennas. (a) Transmitter. (b) Receiver.

r
Monocycle 
Pulse Generator



ULSI Wireless Interconnection using Integrated 
Antennas for UWB Signal Transmission

Takamaro Kikkawa

Research Center for Nanodevices and Systems, Hiroshima University

Outline

1.  Issues of conventional interconnects

2.  Structure of Si integrated antenna 

3.  Measurement set-up for antenna characteristics

Frequency domain; cosine wave

Time domain; Gaussian monocycle pulse

4.  Transmission characteristics of antenna

Linear dipole antenna

Fractal antenna

Effect of substrate resistivity

5.  UWB transmitter and receiver cirucuits

6.  Summary

Issues of Conventional Interconnects

（１）Physical Limit of 
Global Clock Frequency
in ULSI
due to parasitic
resistance and capacitance
of metal interconnects

(2)  Channel Capacity
Theorem

Solution
(1)  Ultra-high-frequency clock distribution by electromagnetic wave
(2)  Ultra-wide-band signal transmission by Gaussian monocycle pulse
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Si Integrated Dipole Antenna and Fabrication ProcessSi Integrated Dipole Antenna and Fabrication Process
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ρ : Si substrate resistivity

■ Inter-chip sample structure
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Fabrication Process

1. Oxidation

2. Aluminum sputtering

3. Lithography

4. Patterning

5. Photoresist stripping

Thermal oxide ( thickness : 0.3 μm )

DC magnetron sputtering ( thickness : 1.0 μm )

Electron beam lithography ( HL700 )

Wet etching

Remover

Structure of Structure of SiSi Integrated Dipole AntennaIntegrated Dipole Antenna

24.0 mm
ReceiverTransmitter

Antenna distance ( d )

SiO2

Si
( P - type<100> )

Low – k
(dielectric constant = 2.15 at 1.0 GHz)

Aluminum1.0μm

0.5μm

260μm

15
.6

 m
m

2.6 mm

Cross-sectional schematic diagram

Fabrication Process:
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■ Measurement structure
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Tx:Transmitting antenna, Rx:Receiving antenna

◆ Fractal antenna 1 : W/L = 1.89675/0.999 [ mm ]
◆ Fractal antenna 2 : W/L = 3.7935/1.998 [ mm ]
◆ Fractal antenna 3 : W/L = 7.587/3.996 [ mm ]

L : Antenna length
d : Distance between antennasW : Antenna width

■ Fractal dipole antenna
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Measurement for Frequency Domain Characteristics of Antenna
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S11 is less than -10 dB for antenna lengths of  4 mm in the
frequency range from 10 to 20 GHz.
Resonance frequencies are 15 - 18 GHz for the resistivities of
10, 79.6 and 2.29 kΩ·cm, respectively.
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Antenna Gain versus DistanceAntenna Gain versus Distance
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Antenna gain decreases with increasing the distance between antennas.
Attenuation rates per unit distance for antennas on the Si substrates
improved with increasing the Si substrates resistivities.

Attenuation rate : 
- 1.5 dB/mm (ρ = 10 Ω·cm )
- 0.9 dB/mm (ρ = 79.6 Ω·cm )
- 0.8 dB/mm (ρ = 2.29k Ω·cm )

Effect of Si Substrates Thickness on Return LossEffect of Si Substrates Thickness on Return Loss
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Return loss < -10 dB  @ 6-19 GHz for 
Si substrates of 10 Ω·cm and 2.29 k Ω·cm

■ Return loss was not affected very much by either thickness or
resistivity of Si substrates.



Effect of Si Substrates Thickness on Antenna Gain Effect of Si Substrates Thickness on Antenna Gain 

Resistivity of inserted Si = 10Ω·cm Resistivity of inserted Si = 2.29 kΩ·cm
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■ Antenna transmission gain decreases with increasing the vertical
distance between antennas, or increasing Si substrate thickness.

■ Antenna transmission gain increases with increasing Si substrate
resistivity.
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■ Maximum antenna transmission gain was obtained
by inserting high-resistivity Si substrates between
antennas.

Characteristics of Gaussian Monocycle PulseCharacteristics of Gaussian Monocycle Pulse
( pulse width = 100 ( pulse width = 100 psecpsec ))
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■ Gaussian monocycle pulse amplitude increased with
increasing Si substrate resistivity.

■ Peak to peak voltages were 1.9 mV and 0.7 mV for Si 
resistivities of 2.29 kΩ·cm and 10 Ω·cm, respectively.
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Gaussian Monocycle Pulse

Attenuation rate: -0.12 mV/mm, Attenuation rate: -1.68 dB/mm @ 20 GHz

Gaussian monocycle pulse amplitude is inversely proportional to the
distance between antennas. It is consistent with the relationship of 
transmission gain versus distance for sinusoidal waves.
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Vp-p was improved by using high resistivity Si substrate.

Effect of Si Substrates ThicknessEffect of Si Substrates Thickness
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■ Antenna transmission gain of –30 dB was obtained for for vertical
distance of 2.86 mm with 2.29kΩ·cm Si substrates.

■ Attenuation rates of antenna gain per unit vertical distance in the
Si substrates were improved by increasing Si substrates resistivity.

Attenuation rate : 
- 4.9 dB/mm (ρ = 10 Ω·cm )
- 0.4 dB/mm (ρ = 2.29k Ω·cm )

Fractal Dipole Antenna Integrated on Si

d

Tx Rx

Si Wafer

dEff

■ Measurement structure

L

W

Tx:Transmitting antenna, Rx:Receiving antenna

◆ Fractal antenna 1 : W/L = 1.89675/0.999 [ mm ]
◆ Fractal antenna 2 : W/L = 3.7935/1.998 [ mm ]
◆ Fractal antenna 3 : W/L = 7.587/3.996 [ mm ]

L : Antenna length
d : Distance between antennasW : Antenna width

■ Fractal dipole antenna

: SiO2 = 0.3μm

: Si = 260μm

S11, S21 and Gain of Fractal Dipole Antenna
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Voltage Standing Wave Ratio and impedance of Fractal Antenna
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Transmission Gain vs Distance for Fractal Dipole Antenna
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Attenuation @ 20 GHz
Antenna1: -1.01 dB/mm
Antenna2: -1.31 dB/mm
Antenna3: -1.53 dB/mm



Effect of Si Substrate Resistivity on
S11, S21 and Gain for Fractal Antenna
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Return loss：S11< -10 dB @ 18-26 GHz
Gain @ 18-26 GHz

-15 dB : 2.29 k cm
-20 dB : 79.6 cm
-35 dB : 10 cm

Effect of Si Substrate Resistivity on
Transmission gain of Fractal Antennas
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Effect of Si Substrate Resistivity on Transmission Gain
as a Function of Distance 
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- 1.01 dB/mm ( ρ = 10 Ω·cm )
- 0.46 dB/mm ( ρ = 79.6 Ω·cm )
- 0.51 dB/mm ( ρ = 2.29k Ω·cm )

Attenuation @ 20 GHz
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UWB Transmitter System Diagram
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UWB Transmitter Circuits Block Diagram
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UWB Transmitter and Receiver Circuits 
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Technology:  TSMC 0.18 m
CMOS Mixed signal process .

Operating voltage: 1.8 V

Summary

1. Intra- and inter-chip characteristics of Si integrated linear dipole and
fractal antennas for use in ULSI were demonstrated.

2. Gaussian monocycle pulses as well as sinusoidal wave signals can be
transmitted between Si chips separated by a spacer and through Si
substrates.

3. Inter-chip transmission gain of -26 dB was obtained for vertical distance
of 2.86 mm through 2.29 kΩ·cm Si substrates and horizontal distance of
3 mm by use of 4 mm long dipole antenna.

4. Return loss of Sierpinski carpet dipole antenna was below -10 dB in the
frequency range from 6 GHz to 26.5 GHz.

5. Transmission gains of Sierpinski carpet dipole antennas did not depend
on the antenna size but on Si substrate resistivity. Antenna transmission
gains for 10 mm apart Sierpinski carpet antennas were approximately -15
dB and -30 dB for Si resistivities of 79.6Ω·cm and 10 Ω·cm, respectively.




