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Abstract

Inter/intra-chip wireless interconnection technology
using fractal antennas for ultra-wide-band (UWB) signal
transmission in Si was demonstrated. Gaussian
monocycle pulse whose pulse width was 100 ps and
center frequency was 15 GHz could be transmitted
horizontally and vertically in Si. Sierpinski carpet dipole
antennas showed superior UWB characteristics for
transmission of Gaussian monocycle pulse without
distortion in 10 mm distance.

1. Introduction

In order to overcome signal delay time in global
interconnects due to parasitic resistance and capacitance,
a concept of wireless interconnection using Si integrated
antennas operating at microwave frequency has been
proposed. [1-4] The channel capacity of information is
proportional to the bandwidth of the signal according to
Shannon’s theorem, indicating that ultra-wideband
(UWB) communication is the most suitable technique to
transmit a large amount of data from ULSI to ULSI.

In this study, the UWB characteristics of Si integrated
antennas are investigated.

2. Experimental

A concept of inter/intra-chip wireless interconnects is
shown in Fig. 1. P-type Si (100) wafers with resistivities
from 10 Q-cm to 2.29 k Q-cm were used as substrates.
The surface of Si was oxidized to form 0.3 um thick field
Si0,. 1 um thick aluminum was deposited on the SiO,
layer by direct current magnetron sputtering and the
antenna patterns were formed by electron beam
lithography. 10 um wide aluminum dipole antennas were
fabricated on SiO, as shown in Fig. 2. Antenna lengths L
of half wavelength dipole antennas changed from 1.0 to
6.0 mm and the distance between transmitter and receiver
antennas changed from 1.0 to 10.0 mm. Fractal antennas
such as Sierpinski carpet dipole antenna were fabricated
as shown in Fig. 3. [5] The feature sizes W/L of the
antennas are 1/1.9 mm, 2/3.8 mm and 4/7.6 mm,
respectively. The gap of the dipole is 70 um. Distances
between transmitter and receiver antennas were ranging
from 5.0 mm to 30.0 mm.

A wafer level measurement set-up for scattering
parameter in frequency domain is shown in Fig. 4.
S-parameter measurement was carried out in the
frequency range from 6 to 26.5 GHz. A measurement
set-up for the transient response of Gaussian monocycle
pulses is shown in Fig. 5.

3. Resultsand Discussion

Dependence of Si substrate resitivity on measured
return losses of dipole antennas as a function of frequency
is shown in Fig. 6. The return losses of half wavelength

dipole antennas with Si resistivities of 79.6 and 2290
Qcm were larger than -10 dB in all frequency range
except at 11 GHz which was a resonance frequency of
antenna length of 6 mm as shown in Fig.6(a). On the
other hand, Sierpinski carpet dipole antenna with Si
resistivities of 79.6 and 2290 Qcm showed larger return
loss in the frequency range from 6 to 19 GHz but much
lower return loss in the frequency range from 19 to 26
GHz as shown in Fig.6(b). As a result, optimum
frequency spectrum of Gaussian monocycle pulse
transmission was obtained as shown in Fig. 6(c).

Effect of horizontal distance between antennas on
peak to peak voltage of Gaussian monocycle pulse for
Sierpinski carpet dipole antennas is shown in Fig.7. The
pulse amplitude is inversely proportional to the horizontal
distance. Effect of Si substrate resistivity on Gaussian
monocycle pulse amplitude of Sierpinski carpet dipole
antenna is shown in Fig.8. The amplitude increases 5-6
times with increasing the resistivity from 10 Qcm to 79
Qcm. Effect of Si substrate thickness on the vertical
transmission of Gaussian monocycle pulse for Sierpinski
carpet dipole antennas is shown in Fig.9. The pulse
amplitude decreased linearly with increasing the vertical
distance to 3 mm in Si so that the vertical attenuation rate
was -0.27 mV/mm. UWB transmitter and receiver
circuits with integrated dipole antennas were designed
and fabricated by use of 0.18 um CMOS technology as
shown in Figs. 10 (a) and (b).

4. Conclusion

Inter/intra-chip wireless interconnection in Si using
fractal antennas for UWB signal transmission was
demonstrated for the first time. Gaussian monocycle pulse
whose pulse width was 100 ps and center frequency was
15 GHz could be transmitted horizontally and vertically
in Si . The received pulse amplitude was improved 5-6
times by increasing the resitivity of Si from 10 Qcm to 79
Q cm. It is found that Sierpinski carpet dipole antenna
showed superior UWB characteristics for transmitting and
receiving Gaussian monocycle pulse without distortion.
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Fig.4. Wafer level frequency domain measurement set-
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Fig.10. Photomicrographs of UWB circuits integrated with dipole antennas. (a) Transmitter. (b) Receiver.



ULSI Wireless Interconnection using Integrated
Antennas for UWB Signal Transmission

Takamaro Kikkawa

Research Center for Nanodevices and Systems, Hiroshima University

7
/Kikkaws Laoratory /
Fanrensa e ,;’

. Issues of conventional interconnects
. Structure of Si integrated antenna
. Measurement set-up for antenna characteristics
Frequency domain; cosine wave
Time domain; Gaussian monocycle pulse
. Transmission characteristics of antenna
Linear dipole antenna
Fractal antenna
Effect of substrate resistivity
. UWB transmitter and receiver cirucuits
. Summary

Issues of Conventional Interconnects

T T T T 20
—m— Local clock frequency

50 - —e— Grobal clock frequency - Local clock frequency

- Global clock frequency

@

mdPhysical Limit of
Global Clock Frequency
in ULSI
due to parasitic
resistance and capacitance
of metal interconnects

Clock frequency [GHz]
3
T

Clock frequency [GHz]

L L
2005 2010
Year

Requirement from ITRS Physical Limitation

0 1
1995 2000 2015

(2) Channel Capacity
Theorem

S C: channel capacity,
C=Blog 1+ | |Ee
N: noise
Solution
(1) Ultra-high-frequency clock distribution by electromagnetic wave
(2) Ultra-wide-band signal transmission by Gaussian monocycle pulse

Si Integrated Dipole Antenna and Fabrication Process

Si substrates

M:si0,=03um

Transmitting L=a '.“"21 Receiving : Si=260p m
L
d

antenna / antenna : Wood = 2.6+ 0.1 mm

: Antenna length
: Horizontal distance

- — between antennas
ntenna leng —] h : Inter-chip vertical distance

o 10
Y @ T oem p : Sisubstrate resistivity
Pad (80 y mx 80y m)

m Inter-chip sample structure
Fabrication Process

DC magnetron sputtering ( thickness : 1.0 y m)
Electron beam lithography ( HL700 )
eratoming |Wetoonng |

Structure of Si Integrated Dipole Antenna

Transmitter Receiver

Aluminum

Sio,

—

T sres Si
—=— (P - type<100> )
! Low -k

(dielectric constant = 2.15 at 1.0 GHz)
\uluum distance (d) { i

Cross-sectional schematic diagram

Fabrication Process:
Layout pattern of integrated antenna on Si. Si-LSI Process Technology

Chip size is 24 mm x 15.6 mm

Ini Antenna length (L) LL

10pm
T H

Pad (80 mx80py m)

Fractal Dipole Antenna Integrated on Si
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m Fractal dipole antenna m Measurement structure
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0 Fractal antenna 3 : W/L = 7.587/3.996 [ mm ]




Measurement for Frequency Domain Characteristics of Antenna
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S,, is less than -10 dB for antenna lengths of 3, 4 and 5 mm in
the frequency range from 10 to 26 GHz.
Resonance frequency is about 15 GHz for 4 mm antenna length.

Reflection coefficient (S,,) [dB]
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S,, is less than -10 dB for antenna lengths of 4 mm in the
frequency range from 10 to 20 GHz.

Resonance frequencies are 15 - 18 GHz for the resistivities of
10, 79.6 and 2.29 k Q -cm, respectively.

Effect of Si Substrate Resistivity on
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improved with increasing the Si substrates resistivities.
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Effect of Si Substrates Thickness on Antenna Gain
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m Antenna transmission gain decreases with increasing the vertical
distance between antennas, or increasing Si substrate thickness.

m Antenna transmission gain increases with increasing Si substrate
resistivity.
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m Gaussian monocycle pulse amplitude increased with
increasing Si substrate resistivity.

m Peak to peak voltages were 1.9 mV and 0.7 mV for Si
resistivities of 2.29 k Q -cm and 10 Q -cm, respectively.
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Gaussian monocycle pulse amplitude is inversely proportional to the
distance between antennas. It is consistent with the relationship of
transmission gain versus distance for sinusoidal waves.
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UWB Transmitter System Diagram
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Technology: TSMC 0.18 pm
CMOS Mixed signal process .

Operating voltage: 1.8 V

Intra- and inter-chip characteristics of Si integrated linear dipole and
fractal antennas for use in ULSI were demonstrated.

Gaussian monocycle pulses as well as sinusoidal wave signals can be
transmitted between Si chips separated by a spacer and through Si
substrates.

Inter-chip transmission gain of -26 dB was obtained for vertical distance
of 2.86 mm through 2.29 kQ -cm Si substrates and horizontal distance of
3 mm by use of 4 mm long dipole antenna.

Return loss of Sierpinski carpet dipole antenna was below -10 dB in the
frequency range from 6 GHz to 26.5 GHz.

Transmission gains of Sierpinski carpet dipole antennas did not depend
on the antenna size but on Si substrate resistivity. Antenna transmission
gains for 10 mm apart Sierpinski carpet antennas were approximately -15
dB and -30 dB for Si resis es of 79.6 Q :cm and 10 Q -cm, respectively.






