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1. Introduction

Optical character recognition (OCR) systems have been
widely used in recent years and various approaches are
applied for developing their hardware and processing
algorithms [1]. As for a small mobile OCR system, ex. a
cognitive pen, usually an ideal model is thought as a system
with high accuracy and speed, and minimum hardware size
at the same time. Different movable OCR products are
presently in the market [2] but they hardly ever afford the
desired robustness and hardware size, simultaneously.

In this research we propose an associative memory based
system for real-time character recognition and evaluate its
performance with real data samples of English texts. The
associative memory we use here as the main classifier is
already designed in our lab [3] and has a mixed analog-
digital fully-parallel architecture for nearest Hamming/
Manhattan-distance search. The OCR system proposed here
may be used ultimately in a cognitive pen product for online
text recognition task.

2. Major System Steps

The major steps of the system are as shown in the block
diagram of Fig. 1. It is worth-noting that all processes are
achieved online.

Read data frames
(Collecting each word’s frames as a bitmap)

v
Binarizing bitmap image
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Noise Removal
(Dilate and erode filtering)
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Character segmentation
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Size normalization
(Resize character bitmap to 16x16 pixels)
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Classification
(Associative memory with nearest-match
Hamming distance and 128 reference patterns)

Fig. 1: Block diagram of major system steps.

For simplicity we suppose that at this phase the system is
used only for recognition of printed texts. The first step is
data reading where the reading device (scanner sensor)
moves on each line of the text with an appropriate speed
and scans the data continuously as a sequence of thin
frames. The frames between each two word spaces are

collected and form a large frame as a gray-scale bitmap
array which contains all the word characters. By taking a
proper threshold value the image is binarized to a simple
black-white bitmap (including noise). In order to remove
noise from the frame, two different filters are applied for
dilate and shrink of the image. Next, by employing a simple
segmentation method and taking a threshold level the black
segments within each frame are recognized and each one is
considered as a single character.

To have an accurate classification each character size is
normalized to 16x16 pixels before classification. We use a
simple linear algorithm for resizing the character bitmap.
The last and main step of the process is character
classification which is carried out by a nearest-distance
search algorithm applying the associative memory. The
normalized segmented character is matched as a 256 bits
vector to a number of reference patterns using the Hamming
distance measure and the reference pattern with minimum
distance is considered as the winner class. More
explanations about the associative memory characteristics
are given in Section 3.

3. Associative Memory Classifier
Figure 2 shows a simple architecture of the compact
associative memory.
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Fig. 2: Associative memory architecture.

A number of k-bit digital subtraction and absolute-value
calculation units compare the W binaries in all rows of the
memory field in parallel with the reference data. The WLA
achieves a large regulation range for feedback stabilization
and eliminates the inefficient possibilities of under- or over-
regulation by a maximum-gain region which self-adapts to
the winner input C,,. A signal follower provides the
necessary high driving current for scaling to an increased
number of reference patterns R. Low power dissipation of
the system is achieved by an individual power regulation
from the signal-regulation units for each input-signal source.
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The transistor-count is only 6 per row. A modified version
of the fast minimum circuit proposed by Opris et al. [4] is
applied for combined feedback generation and distance
amplification. The minimum function is used in the
feedback loop and an intermediate node in each row circuit
is used for the distance-amplified WLA-output LA,. Table 1
shows the performance data of designed associative memory
depending on the Hamming and Manhatan distance
measure. More detailed information about the associative
memory performance can be found in [3].

5. Conclusions

An associative memory based system for online
character recognition is proposed in this paper. Taking an
associative memory of 128 reference patterns size and 256
bits per pattern designed in 0.35 um technology we could
get an average nearest-search time of 45 ns for
classification of different samples of characters written in
Times and Arial fonts.

Table 2: Experimental results of data classification.
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Table 1: Performance data of designed associative Data type Normal Noisy Backaround ro'?ateg
- memory tes_t chips. i Font Times | Arial | Times| Arial | Times | Arial | Times| Arial
Distance Measure Hamming Manhattan (5 bit) Sample no. 10 10 10 10 10 10 10 10
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Performance 1.34 TOPS 160 GOPS —
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Power Dissipation 43 mwW 91 mwW of winner & 11 11 9 10 10 9 8 9
Supply Voltage 3.3V 3.3V nearest loser

4. Experimental Results

The system was simulated with a Matlab program.
Different samples of scanned data including different fonts,
noisy data, color background data, slightly rotated data, and
data with different resolution were selected as the input
samples. A total number of 80 samples for each character
type were gathered. Figure 3 shows some data samples.
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Fig. 3: Some text samples used as input data.

As mentioned in Section 2, each data sample is
considered as a 256 bits vector. The experimental results of
distance-matching between data vectors and reference
patterns are reported in Table 2. As can be seen from the
Table, excepting for the noisy data, the number of
misclassified samples in other cases is zero. The minimum
distance between winner and nearest-loser over all the data
samples is 9 which is reliable enough. Figure 4(a) indicates
the winner-input distance for different data samples. The
average winner-input distance for all the input samples was
calculated and found as 31 bits. Having this distance and
referring to plot of Fig. 4(b) which gives the typical winner
search time of the associative memory according to winner-
input distance, we can find the average search time of 45 ns
for classification of each test sample. This is the search time
within 128 reference patterns and will be changed in case of
increase in reference patterns number.
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The initial classification results taken from real samples
are acceptable however we still need to test the system with
larger number of real data and also apply more effective
algorithms for image preprocessing and noise removal.
Comparing to OCR products existing in the market,
however this prototype model is not yet robust enough but
is advantageous in terms of classification time and
hardware size. We are also planning to develop a system
with a learning algorithm for optimizing the reference-
pattern selection process.
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Optical character recognition (OCR) systems have been widely
used in recent years and various approaches are applied for
developing their hardware and processing algorithms*.

As for a small mobile OCR system, ex. a cognitive pen, usually
an ideal model is thought as a product with high accuracy and
speed, and minimum hardware size at the same time.

Different movable OCR products are presently in the market™

they hardly ever afford the desired robustness and

hardware size simultaneously.

* S.V. Rice, et al., Optical Character Recognition: An Hlustrated Guide to the Frontier, Kiuwer
Academic Publishers, USA, 1995.
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