Multi-bank based Switch Architecture with Flexible Scheduled Buffering of Packets

Takayuki Fujii \dagger, Kazuhiko Kobayashi $\dagger \dagger$, Tetsushi Koide \dagger, Hans Juergen Mattausch \dagger and Tetsuo Hironaka $\dagger \dagger$
\dagger Research Center for Nanodevices and Systems, Hiroshima University, 1-4-2, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
Phone: +81-82-424-6265, FAX: +81-82-424-3499, E-mail: \{fujii, koide, hjm\}@sxsys.hiroshima-u.ac.jp
$\dagger \dagger$ Graduate School of Information Sciences, Hiroshima City University, 3-4-1, Ozuka-Higashi, Asaminami-ku 731-3194, Japan
Phone: +81-82-830-1566, FAX: +81-82-830-1792, E-mail:zuhiko@csys.ce.hiroshima-cu.ac.jp, hironaka@ce.hiroshima-cu.ac.jp

1 Introduction

In recent years, the amount of traffic is increasing rapidly with the spread of broadband [1]. Therefore it is required to expand the data throughput of the whole network. Especially the network switches, which are the connection nodes of the network, need a strong reinforcement of their throughput capability. However, the improvement of the switch performance is difficult because blocking situations are easily generated within the existing switch structures in case of data contention at a given path in the switch fabric. The authors previously addressed the blocking problem which occurs in the switch fabric and the inefficient usage of the switch memory under biased network traffic. A switch architecture using a switch fabric which consists of a multiport memory with 1-port banks was proposed as a solution and a special focus was given on optimizing the data transfer from the 1-port banks to the output interfaces of the switch [2]. In this paper, we investigate the achievable performance improvement by optimizing the data transfer from the input interfaces of the switch and by introducing 2 ports into the memory banks. The effectiveness of the proposed switch architecture is verified by simulation.

2 Multi-Bank based Switch Architecture

We use a bank structure multi-port memory with distributed crossbar as the shared memory [3, 4]. This architecture, called Hierarchical Multi-port memory Architecture (HMA), realizes high access bandwidth of the shared memory by using fully-parallel multiple ports, and also realizes high area efficiency. The proposed scheduling algorithm which is explained in the next section is used for the bank structure, so that it's possible to assign banks according to output port contention or biased data traffic. It becomes also possible to output packets which can't be transmitted from an input port to an output port by blocking in existing network switches. For example, as shown in Fig. 1, the traffic is biased toward output port 1. Several packets are transmitted from plural banks to output port 1 (ex: Banks 1 and M$)$. By definition of the output order, we can reduce the blocking problem. In addition, in this case, the subpackets of packet ID 7 are transmitted to Bank M, so the sub-packets of packet ID 9 are able to be transmitted to output port 5 through a different bank without blocking. Thus we can reinforce the throughput capability.

3 Proposed Algorithm with Dynamic Bank Scheduling

Three management informations are necessary to handle each sub-packet: the packet ID, the sub-packet ID and the output-port number. Since 2-port banks are used, scheduling of input and output interface of the shared memory can be performed simultaneously and independently. The proposed scheduling algorithm compares packet ID or output port number of the sub-packet to be transmitted with the
equivalent data of the previously transmitted sub-packet Details of the proposed algorithm are as follows. Step. 1 It relies on the principle that the complete traffic $\overline{\text { from a given input port to a given output port uses the }}$ bank, which had been initially scheduled, as long as this bank doesn't overflow. In Fig. 1(b) the sub-packets of packet ID 4 will be transmitted to Bank 1.
Step. 2 In this step the new packet is scheduled to the bank to which the last packet with the same output port has been scheduled, as long as the respective bank is not full. In Fig. 1(b) the sub-packets of packet ID 5 or 6 will be transmitted to output port N or 1.
Step. 3 In this step the scheduler searches for an empty bank, which is subsequently used for buffering the traffic from the input port to the respective output port. In Fig. 1(b) the sub-packets of packet ID 9 will be transmitted to output port 5 through an empty bank if there is no bank which stores already sub-packets for output port 5 .

4 Simulation Evaluation of Proposed Switch Architecture

The reference architectures chosen for comparison are the existing switch architectures which use shared bus, crossbar, or multi-stage connection network (omega network [5]). The simulation model of the proposed architecture uses shared memory switch fabric and the scheduling algorithm described in Sections 2 and 3. Evaluation criteria are throughput, inner delay time, and packet-loss rate. Simulation conditions are shown in Tables I and II.

With respect to the output ports both balanced traffic (each output port has the same traffic) and unbalanced traffic (one output port has increased traffic) are evaluated. The degree of unbalance (or bias) for one of the output ports is expressed by a factor $\mathrm{N}(\mathrm{N}=1-8)$. In addition to existing switch structures, a shared-memory architecture which uses 1 port banks is also included in the comparison. The scheduling method for the 1-port-bank-based sharedmemory is the same as that described in Section 3. The parameters for the proposed bank-based shared-memory switch architecture are 64 banks and 54 [Kbit] bank capacity, as determined in a preliminary simulation of the optimal bank number.

The comparison results with the existing switch architectures for throughput and packet-loss rate are shown in Fig. 2 (a) and 2 (b), respectively.

The performance for the proposed architecture significantly exceeds that of the existing conventional switch architectures in every aspect shown in Fig. 2. This is considered to be the case because blocking by contention at the output ports, which is a big problem for conventional switch structures, is successful avoided due to an efficient use of the shared-memory banks. Moreover, when the traffic bias is increased, it turns out that the performance difference between 1-port and 2 -port banks increases too. This is,
because the scheduling algorithm is carrying out control in units of the output ports and of the associated banks. Therefore, a data-traffic bias increases the access volume to specific banks. On the other hand, the use of 1 port banks, increases the blocking frequency because input and output interfaces are no longer independent. So it can be expected that performance difference between 1-port and 2-port banks will appear more clearly for strongly biased data traffic.

5 Conclusion

A switch architecture which uses a banked multi-port memory with 2-port banks was proposed as a solution for the blocking problem of existing switches. Simulation results of the proposed switch architecture verified an improvement in throughput under unbiased as well as biased traffic of about 120% when compared with a switch using a crossbar switch fabric and equal total memory capacity. Future research work will mainly concentrate on the hardware verification of the proposed switch architecture with an LSI design.

Acknowledgements

We would like to express sincere thanks to all the contributors, especially to S. Fukae, K. Johguchi, T. Sueyoshi and K. Aoyama from the Research Center for Nanodevices and Systems, Hiroshima, Japan as well as to K. Nii, M. Yoneda and M. Hirata from Semiconductor Technology Academic Research Center (STARC), Yokohama, Japan.

References

[1] Information and Communications in Japan 2003, Home Pages, http://www.johotsusintokei.soumu.go.jp/whitepaper/eng/ WP2003/2003-index.html/, 2003.
[2] K. Kobayashi, et al., IPSJ Tech. Rep. 2004-ARC-156, pp. 37-42, 2004 (in Japanese).
[3] H. J. Mattausch, et al., IEICE Trans. Electron., Vol. E84-C, No.3, pp. 410-417, 2001.
[4] S. Fukae, et al., IEE Elect. Lett., Vol.40, No.2, 101-103, 2004.
[5] H. Amano, "Parallel Computer," Shokodo Co.,Ltd., 1996 (in Japanese).

TABLE I
Simulation condition(Except for memory capacity).

Simulation time	$200000[\mathrm{cycle}]$
Number of input/output ports	$32[\mathrm{port}]$
Input/Output line width	$32[\mathrm{bit} / \mathrm{cycle}]$
Input load	$100[\%]$
Packet length	$1 \sim 12000[\mathrm{bit}]$ at random
Delay time of routing	$0[\mathrm{cycle}]$
Wire width	$32[\mathrm{bit}]$

TABLE II
Simulation condition(Memory capacity).

| Existing switches | | |
| ---: | ---: | ---: | ---: |
| Input buffer capacity per port | | |
| $228[\mathrm{Kbit]} \times 32[$ port $]$ | $=$ | $7296[\mathrm{Kbit}]$ |
| Output buffer capacity per port | | |
| $12[\mathrm{Kbit}] \times 32[$ port $]$ | $=$ | $384[\mathrm{Kbit}]$ |
| | | Total $7,680[\mathrm{Kbit}]$ |
| Proposed switch | | |
| Input buffer capacity per port | | |
| $120[\mathrm{Kbit]} \times 32[$ port $]$ | $=$ | $3,840[\mathrm{Kbit}]$ |
| Output buffer capacity per port | | |
| $12[\mathrm{Kbit]} \times 32[$ port $]$ | $=$ | $384[\mathrm{Kbit}]$ |
| Total bank capacity | $=$ | $3,456[\mathrm{Kbit}]$ |
| | | Total $7,680[\mathrm{Kbit}]$ |

(Bank capacity per bank is the value which divides the total bank capacity by the number of banks.)

(a) State of proposed switch architecture at time t .

(b) State of proposed switch architecture at time $t+4$.

Fig. 1. Proposed multi-bank based switch architecture, which shows packets which couldn't been transmitted can output to output port 5 with dynamic bank scheduling. In (a), the sub-packets of packet ID 7 are transmitted to Bank M, so, in (b), the sub-packets of packet ID 9 are able to be transmitted to output port 5 through an empty bank.

(a) Throughput.

(b) Packet loss rate.

Fig. 2. Comparison of the proposed architecture with existing architectures.

Multi-bank based Switch Architecture with Flexible Scheduled Buffering of Packets

OTakayuki Fujii1, Kazuhiko Kobayashi², Tetsusi Koide ${ }^{1}$, Hans Juergen Mattausch ${ }^{1}$, Tetsuo Hironaka ${ }^{2}$ ${ }^{1}$ Research Center for Nanodevices and Systems, Hiroshima University ${ }^{2}$ Graduate School of Information Sciences, Hiroshima City University

Hierarchical Multi-port memory Architecture (HMA)

Hierarchical Mutt-port memory Architecture (HMA)

Advantages using a multi-port memory -We can access each port
simultaneously, so that
high access bandwidth is possible
-Ports share the memory capacity, so that highly efficient use of memory is possible.

Problem

-In the conventional N-port SRAM system, area is proportional to the 2 nd power of the number of ports.

Hierarchical Multi-port memory Architecture (HMA) - Regular 2-dimensional arrangement using 1 port memory banks, so HMA has comparatively small area - Activation of each bank only on demand, so HMA has comparatively low power consumption.

Further improvement in performance is aimed at
by using a scheduling algorithm for bank usage.

Bank scheduling algorithm for packets

Characteristics
- According to the data amount towards

\rightarrow Blocking at input is prevented.

- An algorithm is defined for assigning further banks when a certain bank becomes full.
\rightarrow Efficiency of memory usage is raised.
Bank scheduling algorithm
START

Total memory capacity is 7,680 [Kbit]
in the compared switch types.
Traffic biases towards one output port by a factor N ($\mathrm{N}=1,2,4,8$) are analyzed.

Inner delay time

The inner delay time of the proposed method is shorter than for all other methods, except for the bank type method with 1port. The possible inner delay time reduction is 85% in comparison to the crossbar type switch.
Inner delay time is the time from input to output per sub-packet.

Conclusion

Result
-A switch architecture using a banked multi-port memory is proposed. -Simulation evaluation is performed, and the results below are obtained. In comparison to a crossbar type switch,
120% of possible improvement in throughput,
85% of possible improvement in delay time,
and 99% of possible improvement in packet loss rate.

- Hardware implementation is investigated, and it's compared with other architectures.
- Examination of the banked multi-port memory network switch architecture and circuitry,
implementing proposed scheduling algorithm.
- Basic performance evaluation by a test chip design.

