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1. Introduction 
    Metal gate technology is expected to solve the 
problem of poly-Si gate depletion. Since single gate 
material with dual-workfunction is required for the existing 
CMOS integration process, workfunction tuning technique 
for several metals has been extensively investigated. We 
have reported Mo workfunction tuning with nitrogen 
introduction at the last COE workshop [1]. This technique 
still has a trade-off problem between workfunction tunable 
range and device reliability [2-5]. As an alternative way for 
the workfunction tuning, we have investigated NiSi. It has 
been reported that fully silicided NiSi workfunction can be 
modulated by impurity pileup formed at NiSi/SiO2 
interface [6-10]. In this paper, the relationship between 
impurity depth profile and NiSi workfunction is described. 
In addition, an application of Nitrogen solid-phase 
diffusion (N-SPD) to Mo-gate MOSFET process is 
described. 
 
2. Workfunction Tuning of NiSi Gate 
    Figure 1 shows the fully silicided NiSi gate MOS 
diode fabrication process flow. As illustrated in Fig. 2, 
implanted impurity in poly-Si is swept out toward the 
NiSi/SiO2 interface during silicidation by the snowplow 
effect [11]. It is considered that the workfunction shift 
originates from electric dipoles formed at the NiSi/SiO2 
interface as shown in Fig. 3 [5]. The previously reported 
NiSi workfunction shift by using B, P, As, and Sb [6,7] is 
insufficient for CMOS application (Fig. 4). 
    In this work, we have investigated the dependence of 
NiSi workfunction on impurities and silicidation 
temperature. Silicidation was carried out at 400 oC, 450 oC, 
or 500 oC by in-situ lamp heating in a vacuum. The detailed 
conditions of impurity ion implantation and a brief 
summary of resulting flat-band voltage (VFB) shift are 
listed in Table I. Sb, As, P, B, and Ge yielded flat-band 
voltage shift, in contrast to the cases of N and F. It is 
noteworthy that Ge, which is not a dopant for Si, gave rise 
to VFB shift. This indicates that the NiSi workfunction 
could be modulated more widely with impurities other than 
dopants. 
    Figure 5 shows the N and F depth profiles after full 
silicidation at 500 °C. Though the slight impurity pileup at 
the NiSi/SiO2 interface is observed, the VFB shift was not 
obtained. Figure 6 shows the Sb depth profiles after full 
silicidation at various temperatures. The Sb pileup at the 
NiSi/SiO2 interface silicided at 450 oC is larger than that at 
500 oC. Sb peak formed by the implantation (observed at 
~50 nm) vanishes at 450 oC. Lower silicidation temperature 
leads to lower silicidation rate, and hence increase in 
swept-out impurities by snowplow effect. The VFB shift of 
-0.34 V was obtained at 400 oC and 450 oC. However, 
pileup growth results in impurity precipitation at the 
interface in the end. As shown in Fig. 7, partial film peeling 
was found after unreacted Ni removal with acid only for 

specimens silicided under 450 oC [10]. This is attributed to 
void formation at the NiSi/SiO2 interface. This void 
formation was also observed for the sample with In [12]. 
Though the void formation mechanism is not clear yet, it is 
assured that impurity concentration in the vicinity of the 
interface is the key factor. This voiding should be noted as 
a potential roadblock against practical use of fully silicided 
NiSi gate. 
 
2. Mo-Gate MOSFET  
    Figure 7 shows the Mo gate nMOSFET fabrication 
process flow. Though the obtained VFB shift by N-SPD in 
MOS diode process was -0.45 V, that in MOSFET process 
was only -0.1 V, as shown in Fig. 8. Nitrogen EELS signals 
at the Mo/SiO2 interface and the SiO2/Si interface in both 
Mo MOS structures were evaluated to discuss the reason 
why the VFB shift shrunk (Fig. 9). Nitrogen pileup at the 
Mo/SiO2 interface in the diode process reduces by 
subsequent source and drain (S/D) activation annealing, in 
other words, by changing fabrication process to MOSFET 
process. Nitrogen depth profile obtained by back-side 
SIMS supports this result. These results indicate that the 
nitrogen pileup reduction due to the nitrogen redistribution 
in the Mo film causes the reversible workfunction behavior. 
Therefore, the Mo gate MOSFET fabrication process, 
especially thermal annealing, should be modified to control 
the nitrogen redistribution. 
 
4. Summary 
    Workfunction tuning utilizing impurity pileup at the 
metal/SiO2 interface has been investigated. It was found 
that silicidation temperature was an important factor to 
enhance the snowplow effect in NiSi. However, problems 
such as the void formation at the NiSi/SiO2 interface and 
the interfacial reaction should be cleared. In the case of 
Mo-gate MOSFET with N-SPD, a reversible redistribution 
was observed by subsequent thermal treatment. Thus, the 
optimization of the fabrication process is required for 
workfunction tunable Mo-gate MOSFET. 
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Fig. 2  Schematic illustration of impurity pileup formation at the NiSi/SiO2 interface by the 
snowplow effect [11] (a) before, (b) in progress, and (c) after full silicidation. 

Fig. 1  Fabrication process flow of 
fully silicided NiSi gate MOS diodes. 

Table I  Impurity implantation conditions 
and resulting VFB shift. Standard silicidation 
temperature was 500 °C. 

Fig. 4  NiSi workfunction tunable 
range. Drawn based on the data reported 
by Kedzierski et al. [6,7]. 

Fig. 3  Electric dipole model to 
explain workfunction shift at the 
NiSi/SiO2 interfaces [5]. X stands 
for an impurity atom. 
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Fig. 6  Sb depth profiles measured by back-side SIMS. Lower 
silicidation temperature leads to a significant snowplow effect, 
resulting in larger VFB shift. 
Fig. 5  N and F depth profiles measured by back-side 
SIMS. The slight impurity pileup at the NiSi/SiO2 interface 
resulted in no VFB shift. 
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Fig. 8  Fabrication process flow of 
Mo gate nMOSFETs with N-SPD. 

Fig. 9  Nitrogen EELS signals at (a) the Mo/SiO2 in
interface. In MOSFET process, S/D activation annealing
formed by N-SPD, resulting in the less VFB shift. 
Fig. 7  Plan-view SEM 
micrograph of NiSi gate 
with Sb silicided at 450 °C. 
Partial NiSi peeling off was 
found after unreacted Ni 
removal process. 
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