
1. Introduction
    To overcome the short-channel effect ,  three 
dimensional (3-D) transistor structures such as double 
gate structure[1], FINFET[2], beam channel transistor 
(BCT)[3], and corrugated-channel transistor (CCT)[4] 
have been developed.  A schematic of CCT is shown in 
Fig. 1.  This provides high drive current and is suitable for 
power transistor.  

                                                       Fig. 1  Corrugated-channel 
                                                             transistor [4].

 
   One key process to realize 3-D transistor is 3-D impurity 
doping. Using ion implantation technique, uniform 
sidewall doping cannot be achieved even with oblique 
implantation.  Ununiform doping causes ununiform 
threshold voltage across the channel.  In this sense, nearly 
isotropic plasma doping is better for 3-D doping[5].  
  Threfore, doping profile evaluation across the sidewall 
is essential to characterize the doping technique. In 
our study, plasma doping is characterized for special 
application to CCT with an emphasis on 3-D doping 
profile evaluation even with an adverse effect of 
sputtering. 

                                                              Fig. 2  Plasma doping
                                                                          apparatus.

2. Experimental
    Schematic diagram of a plasma doping apparatus used 
in this study is shown in Fig. 2.  Plasma is discharged with 
13.56-MHz RF power supply and minus bias is applied by 
direct current.  Doping gas was a mixture of Ar and AsH3 
at 2 - 4 Pa and the post anneal temperature was 900oC.  
    Sheet resistance of plasma doped samples as a function 
of arsenic dosage is shown in Fig. 3.  "Calculated Dose" is 
evaluated by total substrate current.  Approximately 1 % 
of the substrate ion current is effective as dopants.  This 
may be mainly caused by sputtering and idle current into 
substrate.  
 

:

Fig. 3  Sheet resistance vs As dosage evaluated by SIMS profile.

Fig. 4  SIMS profiles of plasma doping (PD) and ion 
implantation (I/I).

   SIMS profiles of plasma doping are shown in Fig. 4 
as compared with those of ion implantation.  The 2-nm 
screen oxide does not affect the doping profile.  The 
screen oxide is removed before SIMS measurement.
    Then, doping profiles are evaluated as follows.  The 
structures are formed by anisotropic etchant of 2.5-% 
TMAH at 75oC.  Then, plasma doping is performed.  An 
SEM image after doping is shown in Fig. 5.  The BOX-
SiO2 layer is under etched by subsequent HF solution 
treatment.  It is observed the upper part is sputtered.  It is 
estimated that enhanced electric field causes the sputtering 
at the upper edges.  Sputter angle dependence is measured 
and shown in Fig. 6.  Here, angle of perpendicular to 
the substrate is defined to be 0 degree.  Almost the same 
phenomenon was reported in case of plasma CVD[6].

Fig. 5  Cross-sectional SEM photograph of plasma-doped comb 
shaped structure.
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Fig. 6  Angle dependence of sputtering depth.

Fig. 7  Imputiry Enhanced Oxidation.

  Since there has been few effective method to evaluate 
3-D doping profiles, an indirect evaluation method 
utilizing impurity-enhanced oxidation (IEO)[7] which is 
enhanced in lower temperature is developed in this study.
  Obtained data of IEO are shown in Fig. 7.  Since the 
upper surface of comb-shaped structure is (110) and 
a sidewall surface is (111), it is necessary to take into 
consideration the difference in the oxidation rate by 
orientation.  An Arrheniusplot of oxidation rate of (111) 
and (110) is shown in Fig. 8.   

Fig. 8  Arrhenius plot of impurity enhanced oxidation, IEO.

Fig. 9  Cross-sectional SEM photographs for oxidized comb-
shaped structures.

    Oxidized, doped comb-shaped structure is shown in 
Fig. 9 (a).  Compared with oxidized, non-doped comb-
shaped structure is shown in Fig. 9 (b).  It is shown that 
oxidation rate is increased obviously for doped structures.  
Considering the dependences of impurity concentration 
and crystal orientation, 3-D doping concentration is 
evaluated as shown in Fig. 10.  In Fig. 10 oxide thickness 
dips are clearly observed at the top and the bottom 
portions of non-doped beam.  This may be caused by 
stress[8].  Thus, doping concentration evaluation becomes 
slightly inaccurate for sharp edges.   

Fig. 10  In-depth doping concentration evaluated by the method 
proposed.

3. Conclusion
    Plasma doping is carried out to comb-shaped structure 
of 1-µm height and 50-500-nm width.  It is observed 
that sidewalls are doped uniformly at about 5x1019 
cm-3, though top edges are doped at several times 
higher concentration.    Thus a doping profile estimation 
method utilizing impurity-enhanced oxidation (IEO) 
is successfully developed.  While, an adverse effect of 
anomalous edge rounding due to sputtering is found.  
Plasma doping should be carried out coping with this 
sputtering effect.  
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