Characterization of 1.55-um Infrared Light Propagation in SOI Waveguide
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1. Introduction

Recently, optical wiring has been extensively studied due
to its inherent no RC-delay in metal wiring. Therefore, the
light waveguide is expected to be integrated on Si LSI.

In this study, waveguide structure, which is able to be
integrated on Si LSI, is examined. As a substrate, silicon
on insulator (SOI) is used, which is widely put to practical
use in advanced LSI's. Examined structures are those with
bend and MOS ones with aluminum gate as a reflective
material.

While, an optical modulator of MOS structure was
proposed by the authors based on free carrier absorption [1].
Recently, an MOS modulator based on permittivity change
was successfully proposed [2].

2. Experimental

The SOI waveguides are fabricated on {110} SOI wafer.
Thickness and resistivity of the SOI layer are 1.4 um and
10 Q-cm, respectively. BOX layer is 1.0-um in thickness.
Two kinds of waveguide structures are investigated as
shown Fig. 1. Those are formd by TMAH anisotropic
etching or ECR dry etching. In case of TMAH, {111} side
walls are delineated vertically because the etch rate of {110}
to {111} exceeds 130 [3], as shown in Fig. 2.
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Fig. 1 Two kinds of waveguide structures : (a) air / SOI
and (b) Al/50-nm thick SiO, / SOL
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Fig. 2 Characterized six bends delineated with TMAH etchant.

3. Results and Discussion
1) Loss Measurement for Six Bend Shapes

Propagation characteristics at 1.55-um wavelength
are measured by six bends, already shown in Fig. 2. The
results are shown in Fig. 3. While, simulation is done for
these structures using FDTD with PROLOG simulator.
An example is shown in Fig. 4 for No. 4 bend. Evaluated
values are summarized in Table I on an assumption that
absorption in straight portion is equal for six bends.
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Fig. 3 Propagation characteristics for six bend shapes at 1.55-um
wavelength.
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Fig. 4 Simulated propagation for No.4 bend of 10-um width,
using FDTD with PROLOG at 1.55-um wavelength.

Table I Evaluated absorption coefficient and transmission for
six bend shapes.

Measured Values FDTD Simulation
Bend Shapes Absorption Coefficient . L
o (/mm) Transmission Transmission

No.1 0.15 0.21 0.96
No.2 0.15 0.19 0.02
No.3 0.15 0.16 0.56
No.4 0.15 0.22 0.91
No.5 0.15 0.08 4x10°
No.6 0.15 0.06 0




2) Structure Dependence of Propagation Loss

Figure 5 indicates the propagation difference for air
clad or Al/50-nm thick SiO, clad, and sidewalls etched by
TMAH or ECR.

The total optical loss may be affected by six factors
such as (1) free carrier absorption, (2) sidewall roughness,
(3) bend shape (4) coupling loss at input and output
sections, (5) absorption by aluminum, and (6) optical
mode, as shown in Fig. 6, in waveguide.
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Fig. 5 The comparison of propagation characteristics among
three different structures.
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Fig. 6 Infrared microscope output patterns of 1.55-pm
infrared light for 100-uym wide and 30-um wide SOI wave-
guides.

To summarize the results, evaluated absorption
coefficients are illustrated in Fig. 7. It is very obvious that
Al electrode causes propagation loss due to free carrier
in the electrode. Based on the results and simulation of
reflection of plane wave, it is estimated that certain free
carrier concentration gives optimum propagation, shown
in Fig. 8 in case of ITO (Indium-Tin-Oxide).
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Fig. 7 Absorption coefficient summarized for two kinds of
waveguide structures and etching techniques.
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Fig. 8 Reflectivities for various metalic materials, » is electron
density.

4. Conclusion

Integrated SOI waveguide structures are investigated
in this study. Although highly reflective metal layer is
expected to be suitable, light loss is given rise to with Al
Therefore, it is simulated that there exists optimum carrier
concentration for maximum propagation. ITO may be
suitable for its flexibility to choose the concentration.

Futhermore, light propagation mode should be
considered to make accurate simulation in wider waveguide
in paticular.
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