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1.  Introduction 
Control of interfacial oxidation is one of key 

issues to implement high-k gate dielectrics in the 
sub-100nm CMOS generations where the SiO2 
equivalent thickness of the high-k dielectrics stack 
structures below 1.2nm is required imperatively [1].  
From the requirement for the gate dielectric 
application such as high dielectric constant (~25) 
and favorable band offset energy(>1.2eV), HfO2 
and ZrO2 are promising candidates for SiO2 
substitution [2].  However, since such transition 
oxides are good conductors for oxygen ions, the 
oxide deposition on Si(100) and post-deposition 
anneal are always accompanied with the interfacial 
oxidation [3].  In this work, the interfacial 
oxidation in the heterostructures ultrathin HfO2 
formed on thermally-nitrided Si(100) has been 
studied by x-ray photoelectron spectroscopy (XPS) 
and Fourier transform infrared attenuated total 
reflection (FT-IR ATR) measurements. 
 
2. Experiment 
 2.5nm-thick HfO2 layers are prepared on 
thermally grown SiNx(x=~1.3, ~1.0nm in thickness)  
/Si(100) at room temperature by HfO2 evaporation 
in ambient O2 at ~1x10-4Pa.  The thermal 
nitridation of Si(100) was carried out at 700ºC in 
ambient NH3 at 54Pa.  After the HfO2 evaporation, 
the samples were annealed at 300~500ºC in 
ambient O2 at 34Pa for 5min. 
 
3. Results and Discussion 

The stability of ultrathin silicon nitride so 
prepared against oxidation was first examined.  No 
changes in Si2p and N1s spectra between the 
samples before and after O2 anneal at 500ºC were 
observed.  The result indicates that the nitrided 
surface is stable enough against the O2 anneal.  In 
contrast to this, when the stack structure of HfO2 on 
nitrided Si(100) was annealed in the same condition, 
the interfacial oxidation proceeds markedly.  As 
shown in Fig. 1, an increase in the 
chemically-shifted Si2p signals by the O2 anneal 
was observed, indicating the growth of interfacial 
oxide.  From the intensity ratio of the 
chemically-shifted Si2p signals to the signals from 
the Si substrate, it is found that the interfacial layer 
is grown up to 2.2nm in thickness from 1.0nm.  
By the complete removal of the top HfO2 layer 
from the O2 anneal sample with a dilute HF etching, 
the signals in the lower binding energy side of the 

Si4+ peak are reduced by amount of two monolayers 
at most.  Considering the 2nd nearest neighbor 
effect on the Si2p chemical shift, the reduced 
signals can be attributed to Si4+ states at the 
interface between the top HfO2 layer and the newly 
grown interfacial oxide because there exist 
less-electronegative Hf atoms as the 2nd nearest 
neighbors of Si at the interface.  The observed 
change in the N1s spectrum by the HfO2 deposition 
on nitrided Si(100) is interpreted in terms that the 
N-H bonds on the nitride surface are changed partly 
into Hf-N bonds during the HfO2 deposition.  The 
O2 anneal of HfO2/nitided Si(100) causes a new 
component in the N1s spectrum at the higher 
binding energy side, which is attributable to the 
oxidation of the nitride surface.  The partially 
oxidized component in the N1s spectra was 
examined by subtracting the reference N1s 
spectrum of nitrided Si(100) from the N1s spectra 
measured at each thinning step in a dilute HF 
solution as show in Fig. 2.  Taking into account the 
fact that such a wet etching introduces a oxidized 
component on the surface with a monolayer level, 
the oxidized component detected in the case of 
0.3nm in remaining layer thickness is thought to be 
caused by the wet etching.  The result of Fig. 2 
indicates that the silicon oxide layer is formed on 
the pre-grown nitrided layer and interestingly the 
nitride layer thickness almost remains unchanged.  
Namely, we suggest that the oxidation of SiNx is 
accompanied with the movement of N atoms 
towards the substrate side resulting in the nitridation 
of the Si surface.  This was also confirmed by 
p-polarized FT-IR-ATR measurements using a Ge 
prism as shown in Fig. 3.  In the case that HfO2 
was directly formed on HF-last Si(100), an 
absorption band peaked around 1230cm-1 due to 
Si-O-Si LO phonons is remarkably increased by the 
O2 anneal.  In fact, the change in the spectrum 
between the samples before and after the O2 anneal 
is almost identical to the ATR spectrum of ultrathin 
SiO2, where the interfacial silicon oxide layer is 
grown up to 2.2nm form ~0.6nm (in the 
as-evaporated state) as obtained from the XPS 
analysis.  In contrast, for the stack structure of 
HfO2 on nitrided Si(100), an increase in the 
absorption band originating from the silicon oxide 
layer by the O2 anneal with the same condition is 
suppressed significantly.  Notice that there is no 
significant change in the absorption band around 
~1100cm-1 due to the Si-N network., indicating that 



the chemical bonding features of N atoms is almost 
unchanged by the O2 anneal although the silicon 
oxide layer is formed on the nitride layer.  When 
the O2 anneal temperature is decreased down to 
300ºC, no interfacial oxidation proceeds for the 
stack structure of HfO2 on nitrided Si(100) as 
indicated in Fig. 4.  Consequently, even in the case 
with a use of ultrathin SiNx as an oxidation barrier 
layer, the control of O2 partial pressure is required 
to avoid the interfacial oxidation during the thermal 
anneal higher than 350ºC. 

 
4. Conclusions 

For the stack structure of HfO2 on nitrided 
Si(100), the formation of the interfacial oxide layer 
is not completely suppressed with a 1.0nm-thick 

SiNx layer pregrown by direct nitridation at 700ºC 
in ambient NH3.  This result is attributed to the 
fact that the surface oxidation of the SiNx layer 
induces the movement of N atoms towards the 
substrate side and results in the nitridation of the Si 
surface. 
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Fig.  1.  Si2p and N1s spectra taken after annealed of the HfO2/SiNx/Si(100)
stacked structure.  The Si2p spectrum for the annealed sample after complete
removal of the HfO2 layer by dipping in a 0.1% HF solution and the N1s
spectrum obtained from nitrided Si(100) are also shown. All the spectra were
taken at a photoelectron take-off angle of 90º. 

Fig.  3.  FT-IR-ATR spectra taken for (a) HfO2 formed on HF-last Si(100) 
and (b) on nitrided Si(100) before and after O2-anneal at 500ºC.  In each of 
the cases the change in the spectrum was also so show.  
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Fig.  4.  P-polarized ATR spectra for HfO2
formed on nitrided Si(100) taken after
O2-anneal at 300~500ºC.  The spectrum
for HfO2 formed on HF-last Si(100) after O2
anneal at 300ºC was also shown as a
reference. 

Fig. 2.  Changes in non-oxidized and
partially-oxidized nitrogen bonding units as a
function of the interfacial layer thickness,
which were evaluated by the spectral
deconvolution of N1s spectra measured at
each thinning step.  
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Control of the interfacial layer between high-k materials and Si(100)

Suppression of undesirable interfacial oxidation & interface defect generation

One of the major research issues for the
high-k gate dielectric technology 

Aggressive scaling of gate dielectric thickness below 1.5nm in EOT 

Exponential increase in direct tunneling current
with decreasing SiO2 thickness 

Intense efforts in the replacement of conventional SiO2-based

gate dielectrics with physically-thicker high-k dielectrics

Sub-100nm Technology Generation of CMOS Devices 
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Summary

The formation of  the interfacial oxide layer is not completely sup-
pressed with a 1.0nm SiNx layer prepared by 700°C NH3-nitridation

SiNx surface oxidation induces the movement of N atoms towards
the substrate interface and promotes the nitridation of Si surface

The control of O2 partial pressure is required to avoid the interfa-
cial oxidation during the thermal anneal higher than 350°C 


