High-k Gate Dielectrics for Future CMOS Technology

T.P. Ma

Yale University, Center for Microelectronics, and Department of Electrical Engineering New Haven, CT 06520-8284

Introduction

High-k dielectrics are being actively pursued by the semiconductor industry to replace SiO_2 as the gate dielectric for future generations of CMOS transistors. The 2004 ITRS [1] calls for gate dielectrics of less than 1 nm in equivalent oxide thickness (EOT) in the near future, with a very low gate leakage current. Most experts believe that only some sort of high-k gate dielectrics will be able to fulfill these requirements.

The first group of high-k dielectrics that was proposed to replace SiO_2 in recent years consisted of silicon nitride or silicon oxynitride [2,3]. The concept of using a high-k dielectric's larger physical thickness to achieve the same EOT so as to reduce the tunneling leakage current was clearly presented in [2], and the search for the best high-k gate dielectric has continued ever since.

As a result of intense research efforts throughout the world, significant progress has been made, and there is a clear understanding of the important scientific as well as technological issues that need to be resolved before a viable high-k gate dielectric technology may be implemented in production.

Among these issues, the gate leakage problem seems to be mostly under control, as essentially all research groups have reported high-k gate leakage currents several orders of magnitude lower than their SiO₂ counterparts of the same EOT's. In contrast, other issues such as thermal stability, interfacial layer control, EOT control, reactions with polySi, and metal gate electrodes are still posing varying degrees of challenges that require more R&D to overcome, and this talk will give an overview of these challenges and the progress that has been made by various R&D groups.

Because of the space limitation, this extended abstract cannot cover all of the research results that will be reviewed at the oral presentation; instead, only a few examples will be given here in this written document, and an emphasis will be given on the electrical characterization of high-k gate stacks because of the author's expertise.

Materials and Processing Related Issues

Figure 1 shows a schematic cross-section of a MOSFET, where some key regions surrounding the high-k gate dielectric are highlighted. Of these regions, the highk/substrate interface is of utmost importance, as it could significantly affect the over-all EOT of the gate stack, as well as the MOSFET's electrical properties and reliability. Since it was suggested that HfO_2 and ZrO_2 should be thermodynamically stable on Si [4], these two dielectrics quickly replaced TiO₂ and Ta₂O₅ as the favorite high-k dielectrics among various R&D groups. Later on it was found that an interfacial layer inevitably formed between HfO_2 or ZrO_2 and Si substrate, despite the theoretical thermodynamic predictions. By then, the momentum was so high that the R&D community decided to lock in the HfO_2 system (as it has a more stable interface with Si than ZrO_2), and tried to use silicate or nitridation to stabilize the interface [7].

Similarly, the electrode/high-k interface is also very important, as the formation of an interfacial layer there normally lowers the effective dielectric constant, and could cause degraded electrical performance. In severe cases, the so-called Fermi-level pinning phenomenon could occur which adversely affects the threshold voltage [5]. Thus, proper engineering of the electrode/high-k interface is another important issue that is being actively pursued.

In addition to the two interfaces described above, the bulk of the high-k film must be thermally stable. While no consensus has reached, many hold the opinion that the high-k gate dielectric must be either amorphous or single crystalline. Since the viability of single-crystalline high-k gate dielectric is still in the distant future, amorphous high-k gate dielectric has become the desired form, instead of the polycrystalline alternative. This is primarily based on the uniformity argument. Essentially, it is known that some properties, such as the dielectric constant and leakage current, are different between the crystalline regions and the grain boundaries, and therefore one would expect significant non-uniformities of EOT, threshold voltage, and gate leakage distributions in highdensity integrated circuits containing numerous small-size devices, of which some devices may contain primarily crystalline high-k gate dielectrics while others are primarily around grain boundaries. Given the requirement for an amorphous high-k gate dielectric, the ranking of HfO₂ as a desired high-k gate dielectric drops considerably, because it tends to crystallize at a relatively low process temperature (< 500 °C) [6]. In order to overcome this problem, one may add Al in HfO₂ to form HfAlO [6], or use Hf oxynitride, Hf silicate, or nitrodized Hf silicate [7-9]. All of these approaches raise the crystallization temperature at the expense of reducing the dielectric constant. Figure 2 shows that the dielectric constant is reduced, and the bandgap is increased, with the addition of Al in HfO₂, along with an increase in the crystallization

temperature.

Charge Trapping and Mobility Degradation

It is now well known that the channel mobility in a high-k gated MOSFET is typically lower than its SiO_2 -gated counterpart. Since it is also well known that high-k gated MOSFET tends to have more oxide charge and interface traps than its SiO_2 -gated counterpart, it's not surprising that many attribute the degraded channel mobility to Coulomb scattering by oxide charge and interface traps. Upon more careful examination, however, we found that part of the degradation may arise from the soft optical phonons in the high-k gate dielectric that act as "remote phonon scattering centers" and reduce the channel mobility, which is consistent with the theory proposed by Fischetti et al [10]

In the course of our study of channel mobility to determine the possible scattering mechanisms, we found that the conventional methodology used to obtain the channel mobility in high-k gated MOSFET gives rise to very large errors, due to the trapping of carriers. Basically, the use of the conventional split C-V method to extract the carrier concentration in the conduction channel over estimates that concentration due to trapping of carriers, which results in an underestimate of the channel mobility [11]. This error could be as high as 30-50%, based on the typical interface trap density of high 10^{11} /cm² to low 10^{12} /cm² [11]. Therefore, we have introduced a modified split C-V method to more accurately extract the channel mobility [11], and this methodology is briefly depicted in Fig. 3.

It should be noted that trapping/detrapping time constants for some of the high-k gate dielectrics, including HfO_2 and Al_2O_3 , are much shorter than those for SiO₂ [12], and therefore the DC measurement methodology commonly used for MOS devices with SiO₂ gate dielectric will likely to miss these traps. A transient (pulsed) measurement methodology has been introduced to reveal more fully the traps in high-k gate dielectrics [12].

Using the more accurately determined mobility data, we have analyzed the possible scattering mechanisms that may have caused the degraded mobility in high-k gated MOSFETs, and concluded that Coulomb scattering indeed plays a critical role in reducing the channel mobility in high-k gated MOSFET, as expected. Figure 4 shows the strong correlation between the channel mobility and the density of interface traps which serve as Coulomb scattering centers. In addition, we have also gathered evidence that supports the "remote phonon scattering" theory proposed by Fischetti, et al [10]. Figure 5 shows that, compared to its SiO₂ counterpart, the sample made of HfO₂ as the gate dielectric suffers from additional source of phonon scattering, which can be attributed to the "remote soft optical phonons" in the

HfO₂ layer

Inelastic Electron Tunneling Spectroscopy (IETS)

This section introduces a novel technique to probe phonons, traps, microscopic bonding structures, and impurities in high-k gate dielectrics with a versatility and sensitivity that are not matched by other techniques. This technique is called the Inelastic Electron Tunneling Spectroscopy (IETS), which basically takes the 2nd derivative of the tunneling I-V characteristic of an ultrathin MOS structure.

The basic principle of the IETS technique is illustrated in Fig.6, where one can see that, without any inelastic interaction, the I-V characteristic is a smooth curve, and its 2^{nd} derivative is zero. When the applied voltage causes the Fermi-level separation to be equal to the characteristic interaction energy of an inelastic energy loss event for the tunneling electron, then an additional conduction channel (due to inelastic tunneling) is established, causing the slop of the I-V characteristic to increase at that voltage, and a peak in its 2^{nd} derivative plot, where the voltage location of the peak corresponds to the characteristic energy of the inelastic interaction, and the area under the peak is proportional to the strength of the interaction.

In a typical MOS sample, there are more than one inelastic mode, as a wide variety of inelastic interactions may take place, including interactions with phonons, various bonding vibrations, bonding defects, and impurities. Therefore, Fig.7 is shown to represent the typical IETS spectrum that one expects to see. Figure 8 shows an actual IETS spectrum taken on an Al/HfO₂/Si sample, where the features below 80 meV correspond to Si phonons and Hf-O phonons, and the features above 120 meV correspond to Hf-Si-O and Si-O phonons. The significance of this IETS spectrum is that it confirms the strong electron-phonon interactions involving optical phonons in HfO2, and that the Hf-O phonons have very similar energy range as Si phonons which we know are a source of scattering centers that degrade the channel mobility. Therefore, these data indirectly support Fischetti's "remote phonon scattering model" [10].

Figure 8 also shows features corresponding to Hf-Si-O and Hf-O phonons. Since these phonons have much higher energies than kT at room temperature, they are not effective scattering centers at room temperature.

IETS can also be used to probe electronic traps in gate dielectrics. Figure 9 shows stress-induced trap features in a set of Al/HfO₂/Si samples, where one can see the increase of trap density as the electrical stress time increases. We have found that it's possible to reveal the spatial locations and energies of these traps by analyzing the IETS spectra in both voltage polarities [13], and the details of which will be presented at the conference.

Acknowledgment

The author would like to thank former and current graduate students, Wenjuan Zhu, Whye-Kei Lye, Wei He, and Miaomiao Wang, for their contributions to this paper, and SRC and Sematech for their financial support.

References

- 1. The national technology roadmap for semiconductors technology needs: Semiconductor Industry Associations (SIA), 2004
- 2. Kukesh Kahare, Xiewen Wang, and T.P. Ma ``Extending Gate Dielectric Scaling Limit by Use of Nitride or Oxynitride', *1995 International Symposium on VLSI Technology*, Kyoto, Japan, June 6-8 (1995).
- T. P. Ma, "Making Silicon Nitride Film a Viable Gate Dielectric", IEEE Transactions on Electron Device, Vol.45, pp680-690, 1998
- 4. K.J. Hubbard, and D.G. Schlom, "Thermodynamic stability of binary oxides in contact with silicon", J. Mater. Res., Vol.11, No. 11, p2757-2776, 1996
- 5. C. Hobbs, L. Fonseca, V. Dhandapani, et al. "Fermi Level Pinning at the PolySi/Metal OixdeInterface". In *Digest of IEEE VLSI Technology Symposium*, pp. 8-9, Kyoto, 2003.
- W. Zhu, T. Tamagawa, M.Gibson, T. Furukawa, and T.P. Ma, "Effect of Al inclusion in HfO₂ on the physical and Electrical Properties of the Dielectrics", *IEEE Electron Device Letters*, vol.23(11), 649 (2002).
- Jack C. Lee, H. J. Cho, C. S. Kang, S. J. Rhee, Y. H. Kim, R. Choi, C. Y. Kang, C. H. Choi, and M. Akbar, "High-K Dielectrics and MOSFET Characteristics, *IEDM Tech. Dig.*, p.95 (2003).
- M. Koyama, A. Kaneko, T. Ino, M. Koike, Y. Kamata, R. Iijima, Y. Kamimuta, A. Takashima, M. Suzuki, C. Hongo, S. Inumiya, M. Takayanagi and A. Nishiyama, "Effects of nitrogen in HfSiON gate dielectric on the electrical and thermal characteristics", *IEDM Tech. Dig.* p.849 (2002).
- L. P. Rotondaro, M. R. Visokay, J. J. Chambers, A. Shanware, R. Khamankar, H. Bu, R. T. Laaksonen, L. Tsung, M. Douglas, R. Kuan, M. J. Bevan, T. Grider, J. McPherson, L. Colombo, "Advanced CMOS Transistors with a Novel HfSiON Gate Dielectric", *Symp. VLSI Tech.*, p.148 (2002).
- 10. M. Fischetti, D. Neumayer and E. Carttier, "Effective electron mobility in Si inversion layers in MOS systems with a high-k insulator: the role of remote phonon scattering", J. Appl. Phys., Vol.**90**, pp.4587, 2001
- W.J. Zhu, J.P. Han, and T.P. Ma, "Accurate measurement of mobility in MOSFETs made with ultra-thin high-k dielectrics", *IEEE Trans. Electron Devices*, Vol.ED-51, No.1, pp.98-105 (2004)
- Kerber, E. Cartier, R. Degraeve, Ph. Roussel, L. Pantisano, T. Kauerauf, G. Groeseneken, H.E. Maes, U. Schwalke, "Charge Trapping and Dielectric Reliability of SiO2 / Al2O3 Gate Stacks with TiN Electrodes", *IEEE Transaction on Electron Devices*, Vol. 50, No. 5, pp. 1261 - 1269, (2003).
- 13. Miaomiao Wang, Wei He, and T.P. Ma, "Electron Tunneling Spectroscopy Study of Traps in High-k Gate Dielectrics: Determination of Physical Locations and Energy Levels of Traps", to be published in *Applied Physics Letters*

Cross-sectional View of a MOSFET

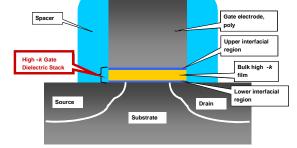
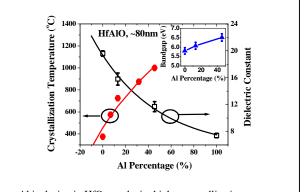



Fig.1 Cross-sectional view of a MOSFET with high-k gate dielectric

• Al inclusion in HfO₂ results in: higher crystallization temperatur larger bandgap, but lower dielectric constant

Fig.2 Crystallization temperature, bandgap, and dielectric constant as a function of Al concentration.

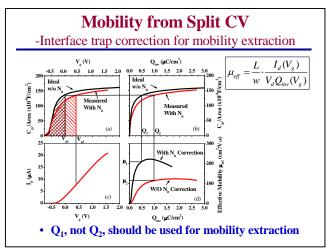


Fig.3 Illustration of the modified split CV method for extracting the carrier concentration and channel mobility.

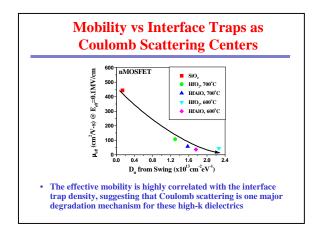


Fig. 4 Channel mobility is strongly correlated to the interface trap density

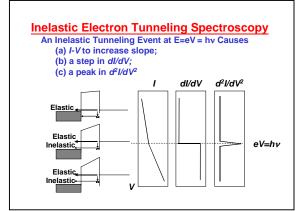


Fig.6 Inelastic interaction causes a slope increase of I-V, a step in dI/dV, and a peak in 2^{nd} derivative, all occurring at the voltage corresponding to the characteristic energy.

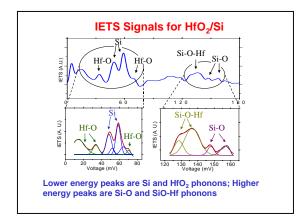


Fig. 8 IETS spectrum for Al/HfO2/Si sample, revealing Hf-O phonons between 15 and 75 meV, and Si-O, Si-Hf-O phonons at higher energies.

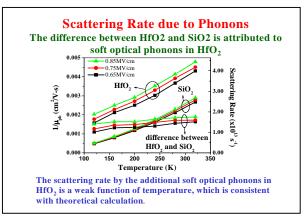
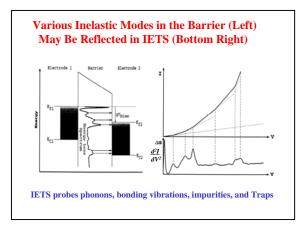
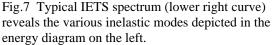




Fig.5 Additional phonon scattering in HfO2-gated MOSFET is attributable to soft optical phonons in HfO₂.

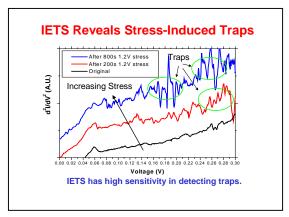
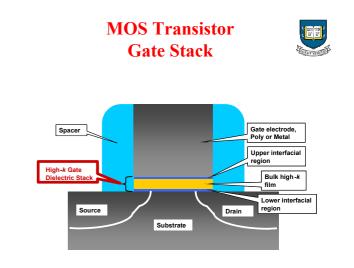
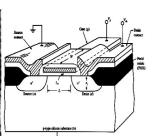
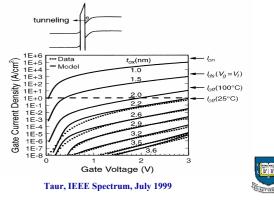



Fig. 9 IETS spectrum for Al/HfO2/Si sample, showing stress-induced trap features.

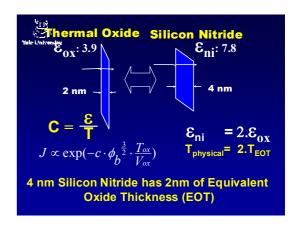
High-k Gate Dielectrics for Future CMOS Technology

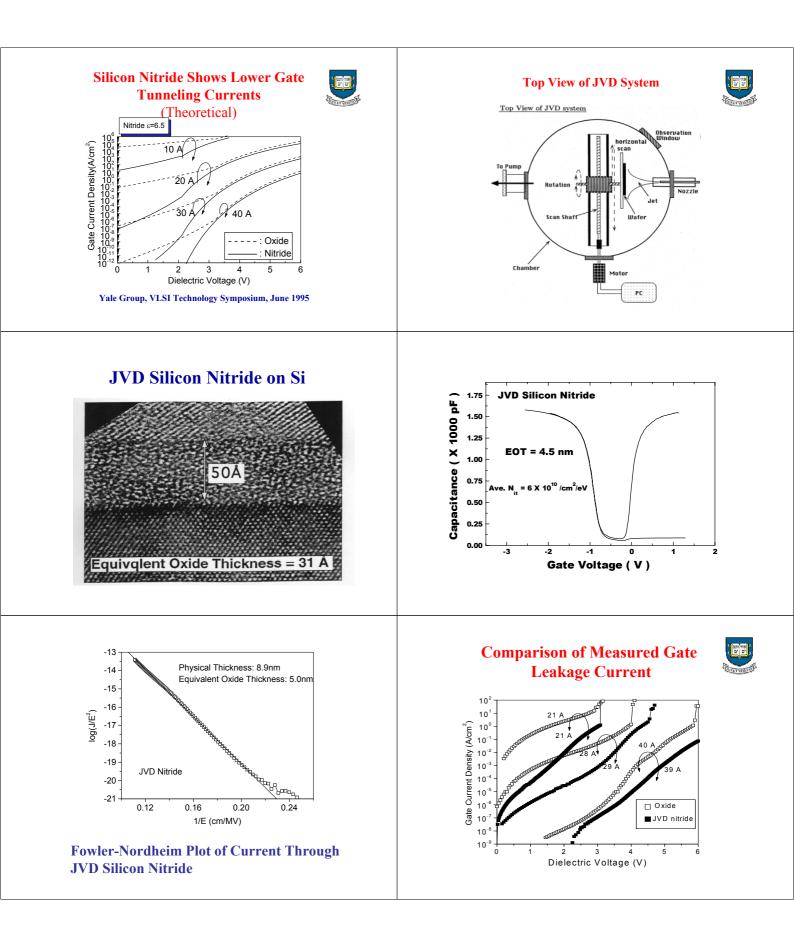
T.P. Ma Yale University Center for Microelectronics

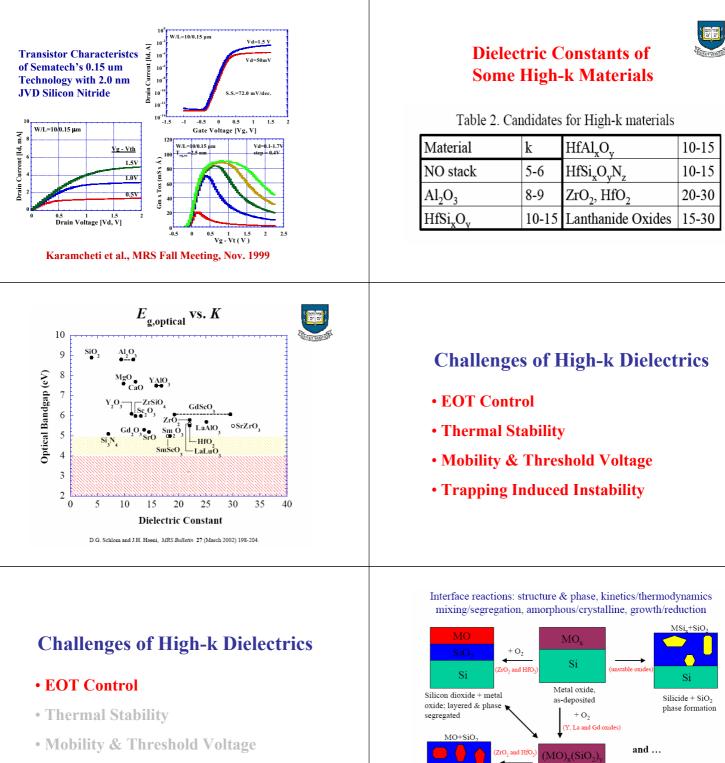

Contributors: Wendy Zhu, Wei He, Mukesh Khare

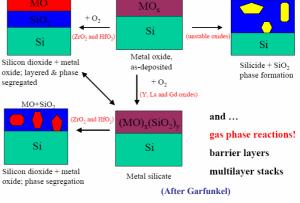

ITRS Gate Stack Parameters

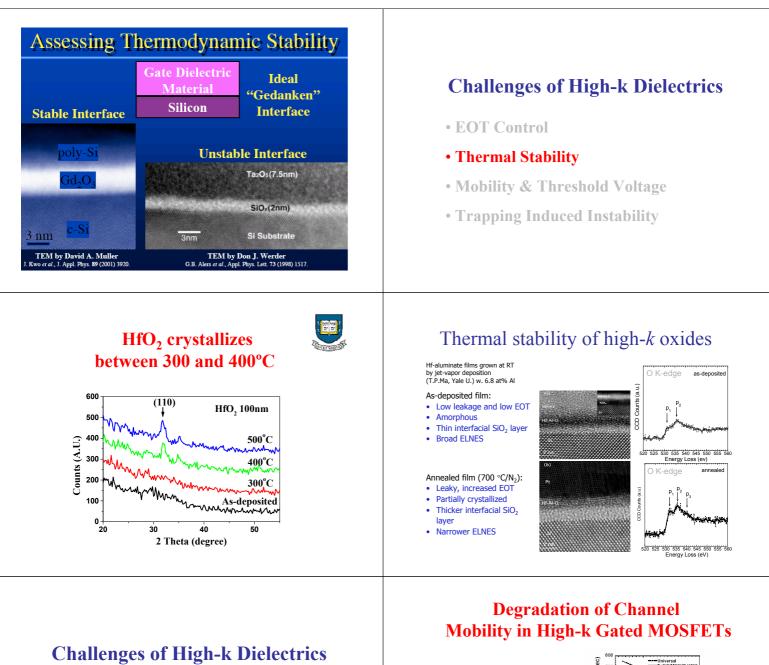
					STAT VERITAR
Year of Production	2004	2005	2006	2007	2010
DRAM ½ Pitch	90 nm	80 nm	70 nm	65 nm	45 nm
Physical Gate Length MPU/ASIC (nm)	37	32	28	25	18
Equivalent physical oxide thickness for MPU/ASIC Tox (nm)	0.9-1.4	0.8-1.3	0.7-1.2	0.6-1.1	0.5-0.8
Gate dielectric leakage at 100°C (mA/µm) High-performance	0.1	0.3	0.7	1.0	3.0
Equivalent physical oxide thickness for low standby power Tox (nm)	1.8-2.2	1.6-2.0	1.4-1.8	1.2-1.6	0.9-1.3
Gate Dielectric Leakage (pA/µm) LSTP	1.0	1.0	1.0	1.0	3.0
Thickness control EOT (% 3s)	<± 4	<± 4	<± 4	<± 4	<±4

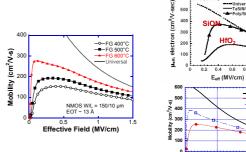

Metal/Oxide/Semiconductor (MOS) Transistor




Tunneling current increases exponentially with decreasing oxide thickness

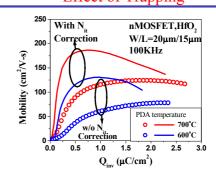

First viable high-k gate dielectric $-Si_3N_4$



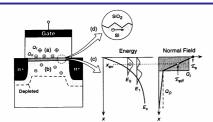


Trapping Induced Instability

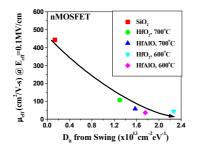
- EOT Control
- Thermal Stability
- Mobility & Threshold Voltage
- Trapping Induced Instability



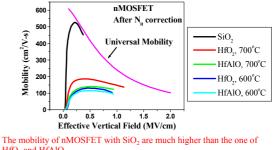
Common Errors in Measuring High-k Gated MOSFET Mobility


- Trapping causes overestimation of carriers and thus underestimation of mobility
- High gate leakage current that results in underestimation of mobility at high fields

Mobility of HfO₂-Gated MOSFET -Effect of Trapping


- Corrected curves are higher
- Both show a peak, as predicted by scattering theory

Scattering mechanisms


- (a) Coulomb scattering due to trapped charge in dielectrics (b) Coulomb scattering due to ionized impurities in depletion layer
- (d) Surface roughness scattering
- (e) Phonon scattering due to lattice vibration

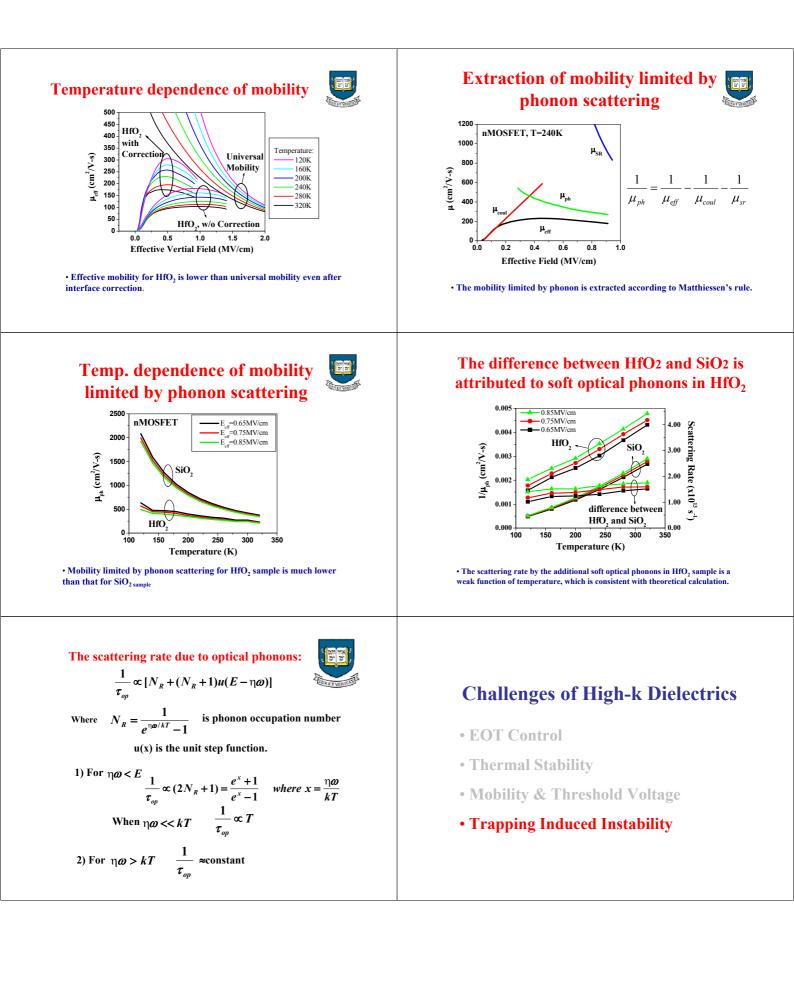
The relation between mobility and interface trap density

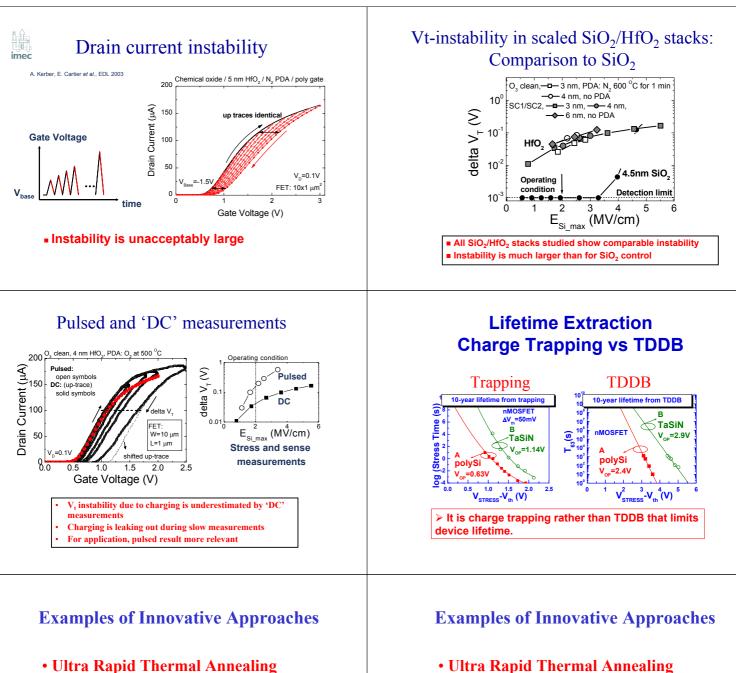
The higher the interface trap density, the lower the effective mobility, indicating that coulomb scattering is one major degradation mechanism of these high-k dielectrics

Mobility of nMOSFET with various gate dielectrics

HfO₂ and HfAlO The mobility of nMOSFET with HfO2 or HfAlO annealed at 700°C are higher than the one annealed at 600°C

Remote Phonon Scattering

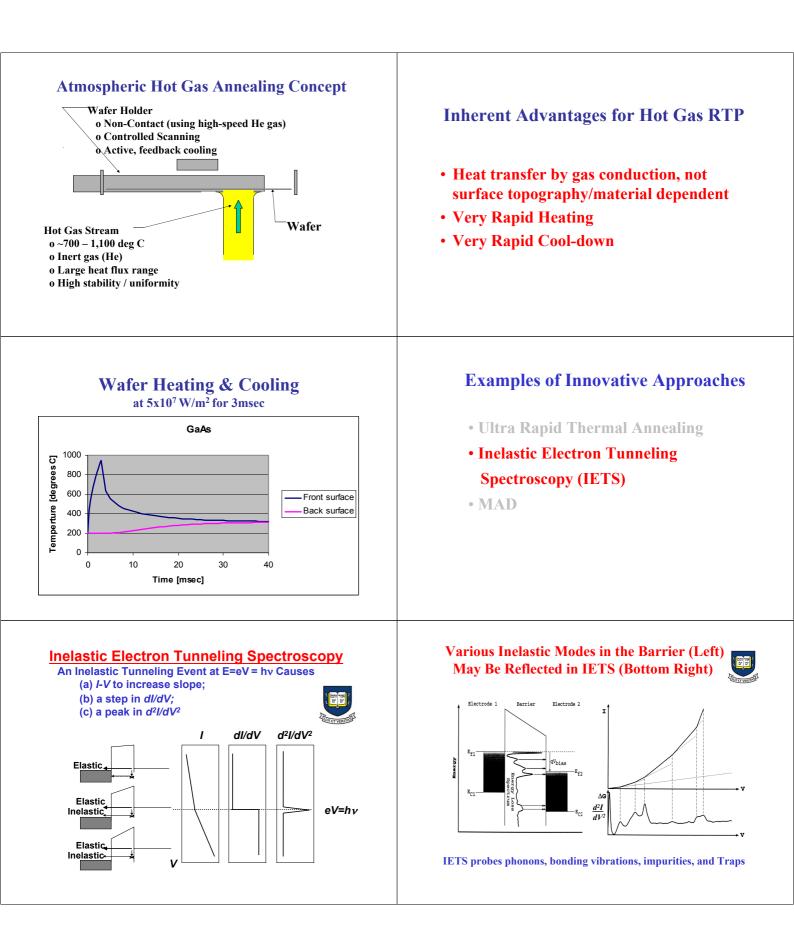

VOLUME 90, NUMBER 9 Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-k insulator: The role of remote phonon scattering

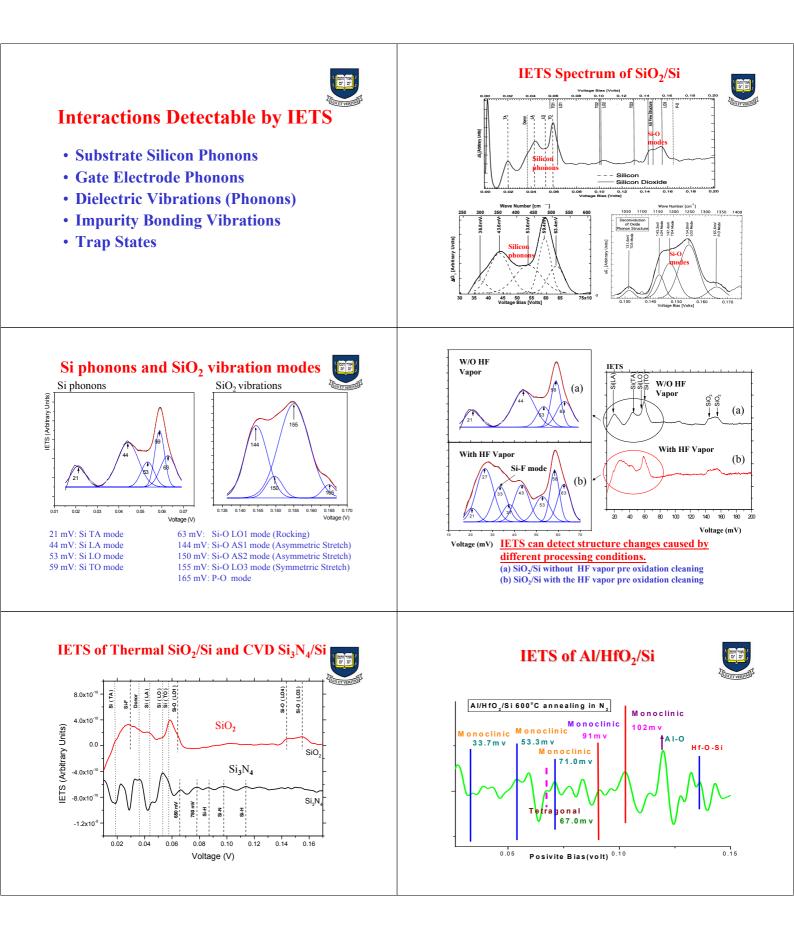

Massimo V. Fischetti,³⁰ Deborah A. Neumayer, and Eduard A. Cartier IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights. New York 10598

(Received 18 June 2001; accepted for publication 26 July 2001)

JOURNAL OF APPLIED PHYSICS

The high dielectric constant of insulators currently investigated as alternatives to SiO₂ in metal The high dielectric constant of insulators currently investigated as alternatives to Sto₂ in metal-oxide-semiconductor structures is a due to their large ionic polarizability. This is usually accompanied by the presence of soft optical phonons. We show that the long-range dipole field associated with the interface excitations resulting from these modes and from their coupling with surface plasmons, while small in the case of SiO₂, for most high-xe materials causes a reduction of the effective electron mobility in the inversion layer of the Si substrate. We study the dispersion of the interfacial coupled phonon-plasmon modes, their electron-scattering strength, and their effect on the electron mobility for Sigale structures employing films of SiO₂, Al₂O₃, AlN, ZrO₂, HO₂, and ZrSiO₄ for "SiO₂-equivalent" thicknesses ranging from 5 to 0.5 nm. \bigcirc 2001 American Institute of Physics. [DOI: 10.1063/1.1405826]





- Inelastic Electron Tunneling **Spectroscopy (IETS)**
- MAD

• Ultra Rapid Thermal Annealing

- Inelastic Electron Tunneling
 - **Spectroscopy (IETS)**
- MAD

							1 I	New York	k 10598		
LDA	261	423,424	570	738	821	667	536	(Receive	ed 18 June 2001; accepted for publicat	ion 26 July 2001)	
GGA	252	382,385	529	640	716	627		oxide-s accomp	e high dielectric constant of insulators currently investigated as alternatives to SiO_2 in m de-semiconductor structures is due to their large ionic polarizability. This is us companied by the presence of soft optical phonons. We show that the long-range dipole ociated with the interface excitations resulting from these modes and from their coupling face plasmons, while small in the case of SiO_2 , for most high- <i>x</i> materials causes a reductiv effective electron mobility in the inversion layer of the Si substrate. We study the dispersi		
Raman	256	382,398	551	672	773	640		surface			
IETS	270	411	572	725	822	637	536	the inter	facial coupled phonon-plasmon modes,	their electron-scattering st	rength, and their effe
IL IS	(33.7mv)	(51mV)	(71mv)	(91mv)	(109mv)	(79mv)			tron mobility for Si-gate structures emp for "SiO ₂ -equivalent" thicknesses rang		
	(35.7111)	(311117)	(/1111)	(911110)	(1091117)	(75111)	(66.4mv)		[DOI: 10.1063/1.1405826]	nig nom 5 to 0.5 mil. © 2	.001 American Insii
		IETO	Signa	lo for		2:		Mot	bility Reduction due	to Soft Phor	on Scatte
	t	Si	Signa		HfO ₂ /		אור ותם י		-		_
		<u> </u>		0.	0.110	- F	LUX ET VERITAS		Gate Dielectric	SiO ₂	HfO ₂
~			ino	S1	-O-Hf	si-O			Bond strength	Strong Si-O bond	Weak Hf-O bo
IETS (A.U.)		Hf-O	Hf-O		/				Optical phonon energy (meV) Rate of emission/absorption	138 Low	34, 48, 70 High
s c	M		\ <i>\</i> /		(-)	+			phonon	LOW	rigi
Ē		\sim		\sim	$\chi \sim$	\sim			Static permittivity $8_{ox}^{0}/8_{o}$	3.9	22.0
	1/ `	\sim	~ <u> </u>	1	\sim				Optical permittivity \mathbf{s}_{0x} \mathbf{s}_{0}	2.5	5.03
	1/			/		<u>``</u>			Electron phonon coupling	Low	High
	0/	6	0	/ 12	0	1 8 0)		strength		
-		Si		Si-	-O-Hf	<u> </u>			Mobility limited by remote phonon scattering	High	Low
IETS (A. U.)			<u>A</u>					Source	Drain	gated MOSFET i ility due to soft phonon energies close to b	onon scatterir
		40 60 tage (mV)	are Si		0 140 15 Voltage (mV)		aher	e-	p-Si Substrate B) Scatt	tering strength $\propto \frac{1}{(\varepsilon_{e})^{\alpha}}$	$\frac{\varepsilon_{ax}^{0} - \varepsilon_{ax}^{\infty}}{(\varepsilon_{ax}^{0} + \varepsilon_{ax}^{0})(\varepsilon_{ax}^{\infty} + \varepsilon_{ax}^{0})}$
					phonons					[M. Fischetti, et.al, J. App	04 / 31 04

Moniclin Tetragon

al

ic Bg

Theoretical (LDA and GGA) and experimental (Raman and IETS) of phonon modes in HfO₂

Mo Bg Mo Ag oclinio Monocli

nic Bg

Monoclini Ag,Bg

Modes Mon Bu

(cm-1)

for Al/HfO₂/Si structure (1) Post-deposition annealing: Furnace vs. RTA 1.40E-007 -1.20E-007 RTA 1.00E-007 8.00E-008 IETS (A.U.) 6.00E-008 Furnace anneal 4.00E-008 2.00E-008

0.00E+000

-2.00E-008

-4.00E-008 -6.00E-008

20

0

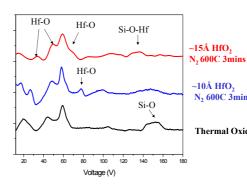
40 60

~15A HfO₂ 600C N₂ 2min ~25A HfO₂ 600C RTA N₂ 2min

140 160 180 200

100 120

Voltage (mV)


80

for Al/HfO₂/Si structure (2)

~10Å HfO₂

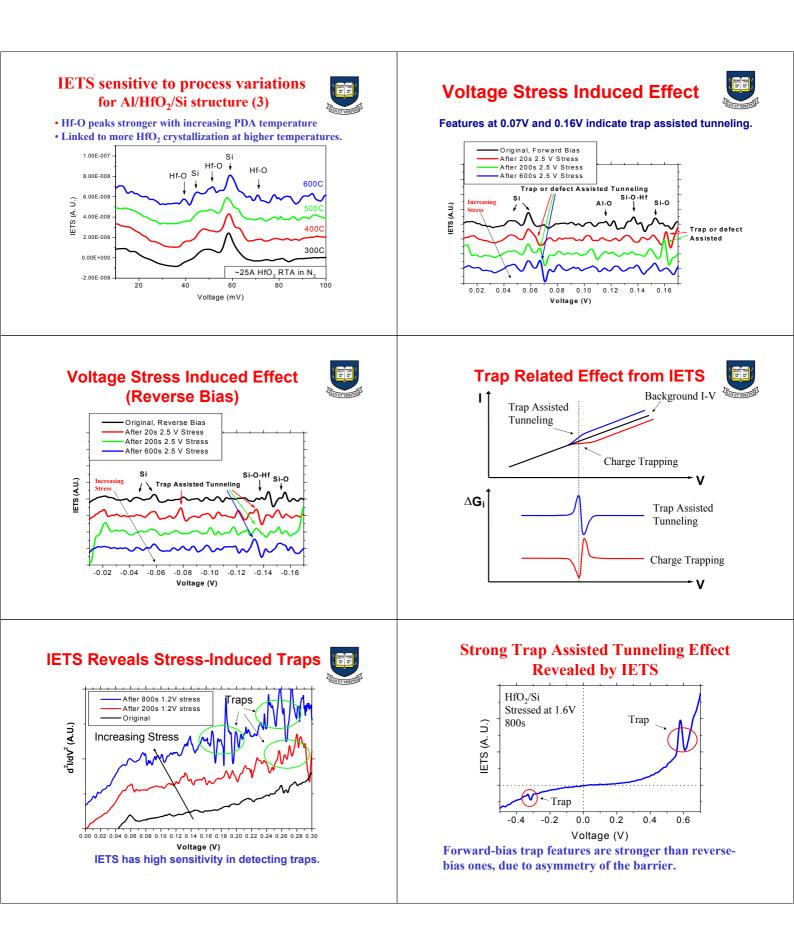
N₂ 600C 3mins + WV 600C 2mins

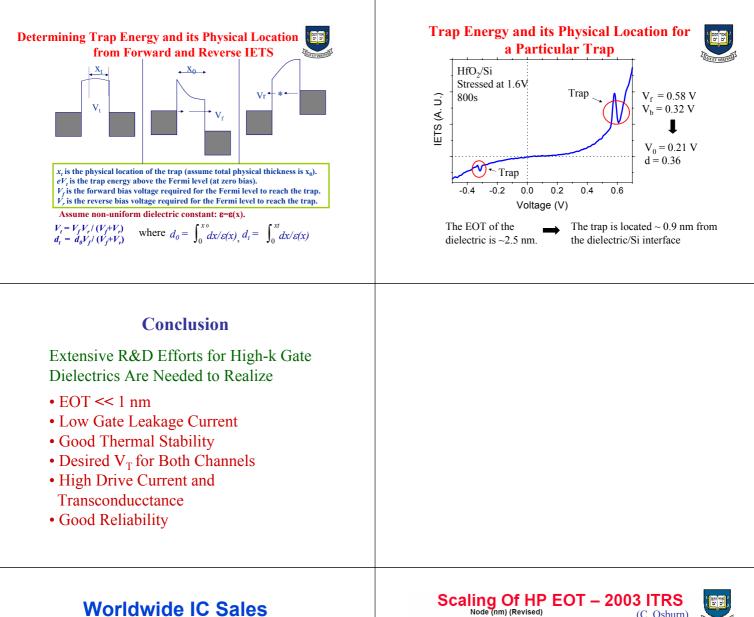
Thermal Oxide Reference

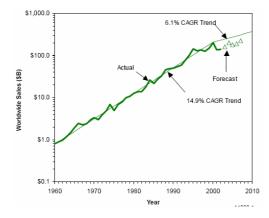
Remote Phonon Scattering

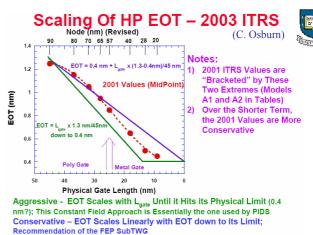
VOLUME 90, NUMBER 9

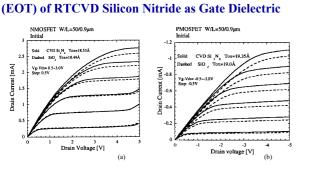
JOURNAL OF APPLIED PHYSICS


1 NOVEMBER 2001


1


Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-k insulator: The role of remote phonon scattering


Massimo V. Fischetti,^{a)} Deborah A. Neumayer, and Eduard A. Cartier IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights New York 10598

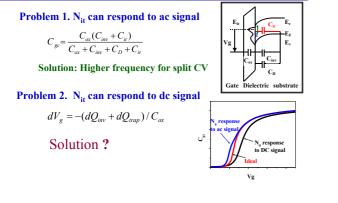

ering

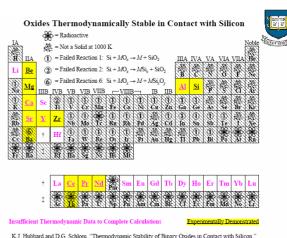
N-Channel and P-Channel Transistors with < 2nm

Fig. 12 Drain current characteristics of transistor with <2nm (EOT) of RTCVD silicon nitride as gate dielectric: (a) NMOSFET, (b) OMOSFET [12]. Song, et al., IEDM Technical Digest, Dec. 1998

I

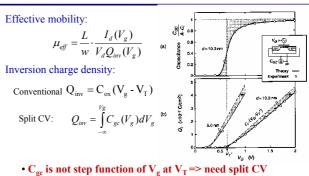
Relative oxide stability (oxygen affinity)
 Do the phases mix ???

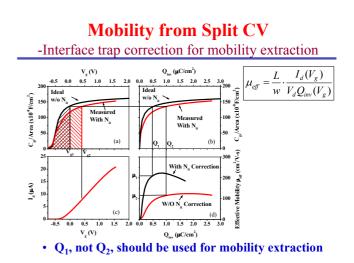

I

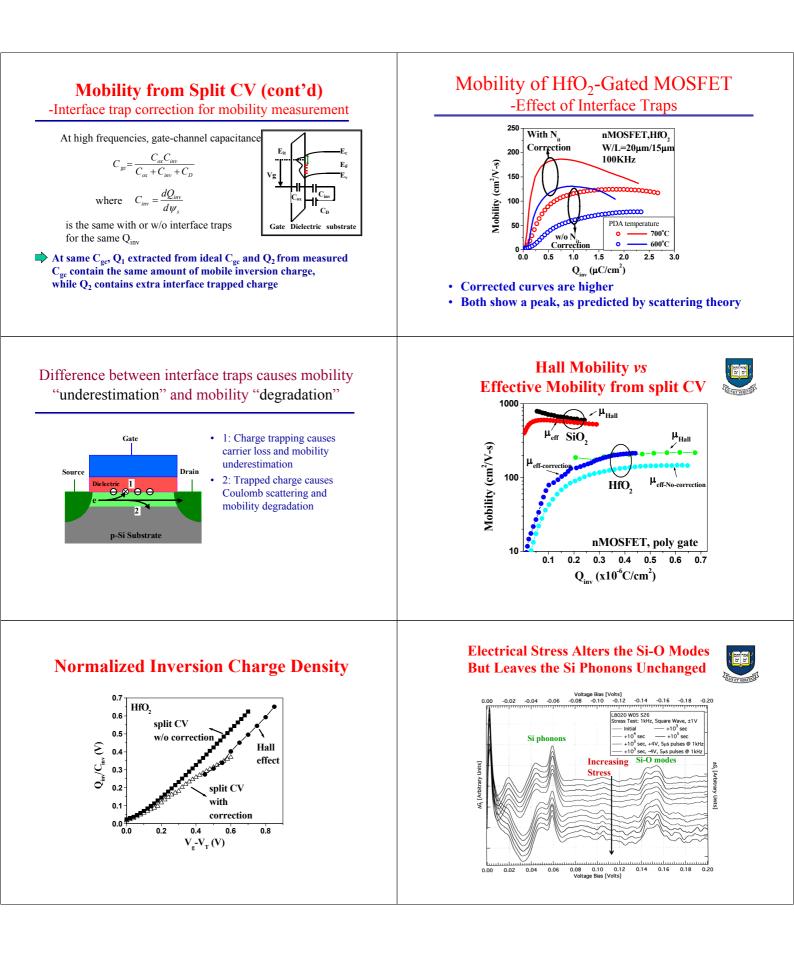

 Suboxide existance and stability ?? 							
Heats of formation of oxide	Metal						

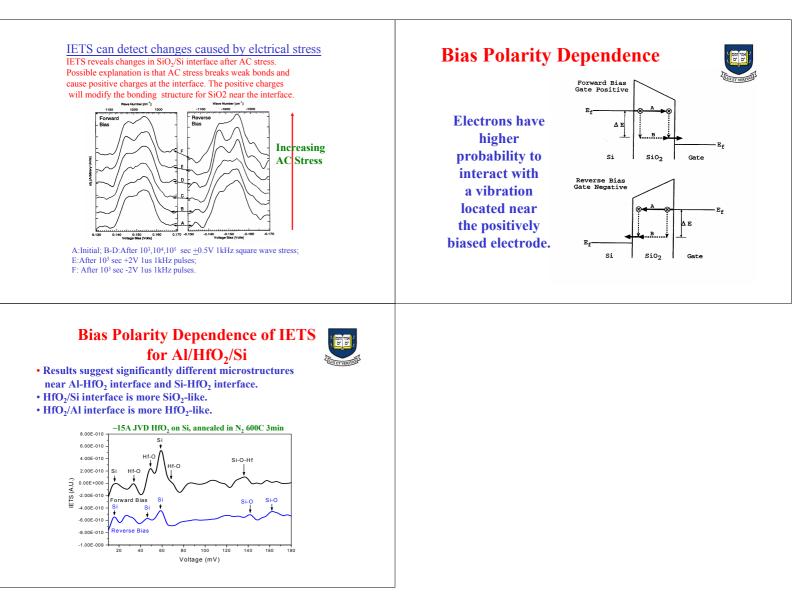
Heats of formation of oxide $(\Delta H_f^0 \text{ in kJ per mole O})$ a	Metal
>0	Au
050	Ag, Pt
-50100	Pd
-100150	Rh
-150200	Ru, Cu
-200250	Re, Co, Ni, Pb
-250300	Fe, Mo, Sn, Ge, W
-300350	Rb, Cs, Zn
-350400	K, Cr, Nb, Mn
-400450	Na, V
-450500	Si 🔶
-500550	Ti, U, Ba, Zr
-550600	Al, Sr, Hf, La, Ce
-600650	Sm, Mg. Th, Ca, Sc, Y

for the most stable oxide of the metal.


Standard split CV method is inadequate for high-k dielectrics with high N_{it}






Mobility measurement

