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Abstract 
For understanding of the device operations and its interaction 
with the circuit in the nano scale era, the device simulation has 
been extended to include the quantum transport effects, 
statistical effects and to be compatible with the circuit 
simulation environments. To do so, the full Newton scheme has 
been developed to fully integrate the Poisson equation, transport 
equation and the Schrodinger equation in the NANOCAD[1], 
which is the in-house developed program for the 2 and 3 
dimensional device simulator. The method is applied to the nano 
scale Double Gate(DG) MOSFET structure showing that the 
quantum effect in the transport direction as well as in the 
vertical direction is important.   Also, the CLESICO[2] system 
has been developed to treat the nodes in the device same as the 
nodes in the circuit, thereby the effects of the internal physics in 
the device on the circuits can be readily understood. The method 
is applied to understand the effects of the thermal noise of the 
MOSFET channel in the RF mixer and the local oscillator. 

 
Introduction 

 
As the  MOSFET channel length is scaled down in the 
sub 40nm scheme, the quantum effects such as the 
quantum confinement effects in the vertical direction and 
the quantum tunneling effects  lateral direction of the 
channel become more important. Also, the detailed 
physics in the device become more transparent to the 
circuit environments as the rail to rail voltage level is 
reduced while the noise level in the device is not scaled. 
The extension of the numerical device simulator to 
include the proper quantum transport effects  and the 
coupled device/circuit simulation (mixed mode 
simulation) open the new horizon to the new paradigm of 
the device design and analysis for the MOSFET device 
and circuits in the nano scale regime. 

For this, we have developed the NANOCAD 
software to find the a self-consistent solution of the 
Schr¨odinger, Poisson, and carrier transport equations[1]. 
Also, the CLESICO system, the mixed mode simulation 
environment to solve the semiconductor equations and the 
circuit equation(KCL and KVL) using the harmonic 
balance techniques[2].   
In the NANOCAD environment, a fully coupled Newton 
scheme [3] is applied to solve the Schr¨odinger, Poisson, 
and carrier transport equations simultaneously. In this 
way, the  numerical error and difficulty(or slow)  in the 

numerical convergence in the decoupled method could be 
largely improved. In the next  section, the application of 
the algorithm to 2DEG/DG(Density Gradient) mode 
analysis of the silicon based DG MOSFET will be 
presented, where the Schr¨odinger equation is solved in 
the confinement direction and the quantum corrected 
transport equation is solved in the transport direction. 
 In the CLESICO system, the devices are 
discretized as in the conventional device simulators. The 
semiconductor equations (i.e. Poisson equation and the 
electron and hole continuity equations) are solved in the 
frequency domain using the harmonics balance (HB) 
technique [4]. The iterative matrix solver, generalized 
minimum residual method (GMRES)[5], is exploited 
since the size of the system is too large to deal with the 
direct solver. We use the ‘quasi-static Jacobian,’ which 
neglects the time derivatives of the governing equations 
for the system including the semiconductor equations, as 
a prescaler. We find out that the method is very effective 
and numerically efficient in decoupling the components 
originated from different sampled components in the time 
domain up to a few hundreds GHz range.  For the noise 
analysis in the CLESICO, the system is linearized to 
obtain the conversion Green’s functions (CGFs) by an aid 
of the generalized adjoint approach [6]. As an example, 
we consider the  RF mixer with the two-dimensional 
MOSFETs and will show that the simulations give the  
correlation between the detailed  physics in the 
MOSFET’s such as the noises and the circuit 
performances.   
 
DG MOSFET simulation  
 
As an example of the 2DEG/DG mode analysis of the DG 
MOSFET shown in fig.1, the two-dimensional 
Schr¨odinger equation is divided into the confinement (y- 
coordinate) and transport (x-coordinate) directions.  
The electron density  in each subband, Nki, is obtained 
by the quasi-Fermi energy (EkFi) and the quantum 
potential. 
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Fig. 1 Schematic of the thin body DGFET structure. The device and 
crystal coordinates are aligned. The same bias is applied to the top and 
bottom gates. 

 
Fig. 2 shows the overall Jacobian matrix to stand for the 
system of equations in the coupled manner. The 
unknowns are the variables, V , ψk , ,Eki , k

iN , and EkFi, 

which are the electrostatic potential, the waver function, 
energy eigenvalue, area density, and Fermi level (of kth 
subband), respectively. 
 

 

 
Fig. 2.Schematic of the Jacobian matrix. The total number of unknowns 
is ((1 + 3Nsub)NxNy + 9NsubNx). Note that each block matrix is very 
sparse. 
 
Fig. 3 and 4 show the  area density of electrons and the 
energy level of the subbands along the channel. In the 
figures, the comparisons are made with the more 
comprehensive  quantum transport model called the 
NEFG model[7,8]built in NANOCAD. It can be shown 
that the DG/DEG model accurately and efficiently 
simulate the internal physics as well as the IV 
characteristics(not shown in this paper). 
 

 
 
Fig. 3. Subband electron densities along the channel predicted by the 
2DEG/DG (line) and NEGF (symbol) models. 

 
 
 

 

 
 

Fig. 4 Bias dependence of the minimum subband energy level predicted 
by the 2DEG/DG model (line) and the NEGF model (symbol). The gate 
bias is first increased from -0.4 V to 0.2 V with the drain bias fixed to 
0.05 V, and then the drain bias is increased from 0.05 V to 0.35 V. 

 

 
RF mixed mode simulation  

 
As an example of the mixed mode simulation using the 

CLESICO system, the effects of the diffusion noise 
sources of the MOSFET channel to the RF mixer are 
simulated. The circuit considered in this work is the 
single-balanced RF CMOS mixer with 2 resistors and 
three MOSFETs as shown in Fig. 5. The output is taken 
as a differential voltage from drains of  two LO 
transistors. The number of the unknowns per a sampling 
time is about 24,000. Since the number of the harmonics 
is set to 10, the whole system has about a half million 
unknowns. The magnitude and fundamental frequency of 
the LO signal is 0.15 V and 1 GHz, respectively. We 
found that the  conversion gain from the 1.1 GHz RF 
signal to the output at 0.1GHz is 1.33.  
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Fig. 5 Circuit schematic of the single-balanced down-

conversion mixer.  
 
 The CGF(Conversion Green Function) for the mixer 

output noise voltage at 0.1 GHz  corresponding to the 
(modulated) electron noise source is calculated. Fig. 6 
shows the CGF for 1.1 GHz noise source in the RF port 
MOSFET. The noise source in the drain side has strong 
impact on the mixer output noise. Fig. 7 also shows the 
same quantity in the left LO port MOSFET. Contrary to 
Fig. 6, the noise source in the source side has a strong 
impact on the  mixer output noise since the frequency 
down-conversion from 1.1 GHz to 0.1 GHz takes place in 
the channel in the LO port MOSFET. Similar studies have 
been performed to understand the CGFs for other 
frequency components of the noise such as  0.1 GHz 
noise source (no frequency conversion) in the RF port 
and LO port MOSFET. The effect of the noise source 
only in the drain side of the LO port MOSFET is found to 
be dominant because the frequency conversion is not 
needed in this case.  
 
  

 
 
 Fig. 6. CGF for 1.1 GHz noise source in the RF port 

MOSFET. 
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In Fig. 8 and 9, we plot the CGFs along the channel in 
the RF port MOSFET and LO MOSFET,respectively.  

In this way, the detailed contribution of the noises 
originated from each device (and passive elements) to the 
output noise can be known. In this example,  the power 
spectral density of the mixer output noise voltage is 
calculated to be 20.2 (nV)2/Hz, among which 55 % comes 
from the RF port MOSFET and the other comes from the 
LO port MOSFETs (the noise from two resistors are not 
considered).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. CGF for 1.1 GHz noise source in the left LO 

port 
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Fig. 8. CGFs along the channel in the RF port 

MOSFET. 
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Fig. 9. CGFs along the channel in the left LO port 

MOSFET. 
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Conclusion 
 
 In this work, we have developed the coupled scheme for 

the Schrodinger equation , transport equations and the 
Poisson  equation. The scheme is successfully applied to 
the modal approach for the DG MOSFET structures. Also, 
the physics based TCAD framework, CLESICO, is 
developed to perform the mixed mode simulation in the 
circuit environments. The method is applied to the mixer 
circuits used to down convert the RF signals. It is shown 
that the detailed internal physics in the devices and their 
interactions with the circuit node can be known . 
It is believed that the approaches will render more 
profound tool for the analysis and design of the nano 
scale MOSFET devices and circuits. 
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Effective Quantum Potential
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1D MOSCAP Simulation
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Quantum mechanical model

-Full Quantum and ballistic
-Mode Space approach with 

*  Drift diffusion
*  Hydro dynamic

Directly solve the coupled Poisson and Schrödinger equation using the 
finite element method for arbitrary shaped device domain in open B.C.

2D Quantum Ballistic Transport Model2D Quantum Ballistic Transport Model
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lead: Ω1 ,…, Ω4
device boundary: Γ0
device/lead boundary: Γ1, …, Γ4
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Boundary condition at the leads

where χm is the solution of the coupled 1-D Poisson and Schrödinger
equations at the lead i
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The local coordinate systemThe local coordinate system
in lead in lead ii regionregion

Sampling of the Density of State: Calculate sine and cosine like bound 
states (standing wave solution) and eigenenergies (Laux et al.) 
⇒ Decompose these eigenstates into the traveling states

2D Quantum Ballistic Transport Model2D Quantum Ballistic Transport Model

x

E

incident from left

:

:

Calculation of the SineCalculation of the Sine--like bound like bound 
statesstates

E

incident from right

E

SinSin--like bound state is decomposed into like bound state is decomposed into 
traveling traveling wavefunctionswavefunctions

ModeMode--space Approachspace Approach

The 2-D Schrödinger equation is divided into the confinement (y)
and transport direction (x).
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SemiSemi--classical Transport with Quantum Correctionclassical Transport with Quantum Correction

Effective quantum potential is derived from the Wigner distribution 
function ⇒ its gradient acts as a driving force

It is an approximate approach, which gives reasonable results when 
the quantum confinement effects are dominant. 
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Top Gate

Bottom Gate

Source Drain
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y n+

n+
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Simulation Example (Structure)Simulation Example (Structure)

Schematic Structure of  Schematic Structure of  NonNon--idealideal
7.5 nm Double7.5 nm Double--Gate MOSFETGate MOSFET
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Top Gate (ideal n+ poly gate)

Bottom Gate (ideal n+ poly gate)
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x (transport)

y (confinement)

Schematic Structure of  Schematic Structure of  idealideal
7.5 nm Double7.5 nm Double--Gate MOSFETGate MOSFET

2D Quantum Ballistic Transport 2D Quantum Ballistic Transport 
Simulation ExampleSimulation Example

Conduction Band Edge (VConduction Band Edge (VGG==--0.2 V)0.2 V)

Electron Density (VElectron Density (VGG==--0.2 V)0.2 V)

SineSine--like bound state examplelike bound state example

CosCos--like bound state examplelike bound state example

ModeMode--space Approach Examplespace Approach Example

Strong interference
due to the reflected 
wave

Propagation direction
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20nm and 10nm DG MOSFET
The scaling properties of the DG-FET devices using 
the physics-based device simulation:

following the ITRS roadmap from the 35 to 18 nm 
nodes for the high performance logic devices.

Mode Space Approach:
the quantum confinement effects are considered by solving 
the Schrödinger equation in the confinement direction.

In the transport direction:
Drift-Diffusion Model

(µlow=300 cm2/V-sec, vsat=1.035×107cm/sec)

Hydrodynamic Model

(µlow=300 cm2/V-sec, vsat=1.035×107cm/sec, τW=0.05 psec)

Quantum Ballistic Transport Model

DG-FET Structure
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Scaling of DG-FET (ITRS Roadmap)
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20152013 2014 2018201720162012Year of production

Silicon thickness is chosen to half of the printed gate 
length.

Poly gate depletion effects are approximately taken into 
account by adding 0.2 nm to the EOT. 

Quantum Confinement (Electron 
Density)

Electron density when Tsi=10 nm
(hp 35 node)

Electron density when Tsi=5 nm 
(hp 18 node)

Electron density near the interface decreases rapidly due to the
quantum confinement effects. 

Subband Energy Levels

Subband Energy Levels 
(hp35 node, VG=-0.5 V)

Subband Energy Levels
(hp18 node, VG=-0.5 V)

6 subbands per each valley (18 subbands in total) are considered in this 
work.

Note that the spacing between the levels increases as the device is 
scaled down. 
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Subband Electron Densities

Subband Electron Density 
(hp35 node, VG=-0.5 V)

Subband Electron Density
(hp18 node, VG=-0.5 V)

The electron densities in the excited subbands 
decrease as the device are scaled down. 
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ID-VG Characteristics in Saturation

ID-VG Characteristics 
(log scale)

ID-VG Characteristics 
(linear scale)
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ID-VG Characteristics in Saturation 
(continued)

ID-VG Characteristics 
(hp 35 node)

ID-VG Characteristics 
(hp 18 node)

It seems that the hydrodynamic model overestimate the 
drain current in the sub-threshold region (especially in 
the short-channel device)
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Current
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The difference in the threshold voltage between the drift-diffusion 
and quantum ballistic models increases as the scaling proceeds due 
to the source-to-drain tunneling effect. 

CLEISCO

A Physics-Based TCAD Framework

for the Noise Analysis of RF CMOS Circuits 

under the Large-Signal Operation

Device-circuit mixed-mode simulator with 
noise prediction capabilities

— supports the 2D (or 3D) numerical drift-
diffusion device model and the lumped 
elements model.

— Both the shooting method or the 
harmonic balance (HB) method.

— calculate the periodic steady-state (PSS), 
the small-signal responses (PAC), and the 
noise performance (PNOISE) of the device-
circuit mixed system.

— Both the quasi 2D model based on the 
SP method for >100 devices.

Circuit schematic

Nonzero pattern of Jacobian

Devices

Circuit

Device-Circuit Coupling Scheme
A device-circuit coupling scheme [3] is used to handle the large system 
efficiently. Almost linear dependency of the linear system solution time on 
the number of the devices can be obtained without loss of accuracy in the 
Jacobian.
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[2] K. Mayaram, and D. O. Pederson, IEEE TCAD, vol. 11, pp. 1003-1012, 1992.
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Periodic Noise Analysis

The conversion Green’s function (CGF) [5]:
the effect of the noise source with frequency of               at position      in 
the i-th device on the output noise voltage with frequency of           .

[5] F. Bonani, S. D. Guerrieri, G. Ghione, and M. Pirola, IEEE TED, vol. 48, pp. 966-977, 2001.
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Example 1  
- Noise in Single-Balanced Mixer

Single-Balanced Mixer: Down conversion mixer
with 0.18um technology

Circuit schematic of the single-
balanced down-conversion mixer

LO freq. 1 GHz, RF freq 1.1 GHz, IF freq. 0.1 GHz

Amplitude of LO signal 0.3 V

0.7 V + vRF

1.0 V + vLO 1.0 V − vLO

1.8 V

40/0.18 µm

vout+ _

500 Ω

40/0.18 µm

40/0.18 µm

500 Ω

Output voltages of periodic steady-
state solution without RF signal
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Simulated Conversion Gain 

The conversion gains for RF input is calculated by periodic small-signal 
analysis. The primary conversion gain from 1.1 GHz (RF freq.) to 0.1 GHz 
(IF freq.) is found to be 3.01 V/V.

Conversion gain for 1.1 GHz RF input
in frequency domain

Small-signal response for 1.1 GHz RF 
input in time domain

0 5 10 15 20-5

0

5

Time [ nsec ]

Sm
al

l-s
ig

na
l r

es
po

ns
e 

[ V
/V

 ]

-6.9 -3.9 0.1 4.1 7.10

0.5

1

1.5

2

2.5

3

3.5

Output frequency [ GHz ]

C
on

ve
rs

io
n 

ga
in

 [ 
V/

V 
]

Conversion Green’s Functions for RF Port MOSFET

, CGF from 1.1 GHz to 0.1 GHz

In the RF port MOSFET, every noise component experiences the frequency 
conversion process before appearing in the output noise voltage.
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, CGF 
from 1.1 GHz (noise source)
to 0.1 GHz (output voltage)
in the RF port MOSFET is
dominant.
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, CGF 
from 0.1 GHz (noise source)
to 0.1 GHz (output voltage)
in the RF port MOSFET is
negligible (< 0.1 V/A).
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Conversion Green’s Functions for LO Port MOSFET
The frequency conversion process takes place in the channel of the LO port 
MOSFETs. In the LO port MOSFETs, only noise component near the 
source experiences the frequency conversion process before appearing in 
the output noise voltage. 
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Spatial Contribution of Noise Source (HB results)

The contribution from the RF port MOSFET to 0.1 GHz output noise voltage 
is found to be 20.2 (nV)2/Hz.

Drain

SourceSource

RF port MOSFET LO port MOSFET

Drain

The contribution from two LO port MOSFETs to 0.1 GHz (IF) output noise 
voltage is found to be 16.5 (nV)2/Hz.

The figures show the spatial noise contribution calculated from the HB code. 
Integrating over the device volume, we can obtain the total noise 
contribution of the device.



IV. Example 2  
- Phase Noise in LC Oscillator

NANOCAD:
Various models   for  quantum transport has been shown: 
space mode approach
may be the best to connect from the DD to Quantum effects
Need a ‘new mobility model’ suitable to the 10nm.
A basis for the H generation from the carrier energy
Need to merge with MC to predict the statistical model

CLESICO
Device/circuit simulation system has been proposed
Noise/reliability/nonlinearity from NANOCAD has to be
implemented to CLESICO to understand the device/RF 
interaction

ConclusionConclusion

Periodic Small-Signal Analysis
Consider a circuit whose input is the sum of two periodic signals. Here one 
is an arbitrary periodic waveform with period       . The other is a “small”
sinusoidal waveform with frequency      . Then,     

LT

sf

Then, the (complex) small-signal response          satisfies the following 
relation between two time points       and             .      

sv

1( ) ( )exp( 2 ) ( )s L s s L sv t T v t j f T v tπ α−+ = =

This relation is employed for the boundary condition for the periodic small-
signal analysis [4].    

t Lt T+

[4] R. Telichevesky, K. Kundert, and J. White, DAC 1996, pp. 292-297, 1996.

1

1 2 2 2 2

2 3 3 3 3

3 4 4 4 4

0 0 ( ) 0
/ / 0 0 ( ) ( )

0 / / 0 ( ) ( )
0 0 / / ( ) ( )

s

s

s

s

I I v t
C h G C h v t u t

C h G C h v t u t
C h G C h v t u t

α−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + ⎣ ⎦⎣ ⎦ ⎣ ⎦

22( ) e e sL j fj nf
s n

n
v t V ππ

∞
+

=−∞

= ∑

Periodic Steady-State Analysis

The “matrix-free” shooting method [3] with GMRES is adopted.

[3] R. Telichevesky, K. S. Kundert, and J. K. White, DAC 1995, pp. 480-484, 1995.
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The state-transition matrix               are not calculated explicitly, therefore, 
we can avoid the operation with the dense matrix             . 

(4;1)kφ

Transient
simulation

(4;1)kφ

Oscillator Phase Noise Analysis

The perturbation projection vector (PPV) method [6] is adopted. The 
perturbation projection vector         represents the effects of the noise 
sources on the oscillator phase deviation     .

[6] A. Demir, and J. Roychowdhury, IEEE TCAD, vol. 22, pp. 188-197, 2003.

The timing jitter in one clock cycle
has a variance       .
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Limit cycle of an oscillator

How much does this perturbation 
contribute to the phase deviation?
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