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1. Introduction 

Recently, the progress of robots is remarkable in the field of 
high speed operation, humanoid, imitation of behavior and 
entertainment. Nevertheless, few autonomous robots having 
behavior-learning capability are developed. The main reason is 
that learning is insecure to environmental changes and the 
learning speed is slow.  

Jordan et al. [1] proposed “modular learning model” for 
solving this problem. Doya et al. [2] proposed a module based 
learning model “MMRL”, which improves Jordan’s model in 
flexibility to environmental changes. It has many modules, 
each of which is composed of a situation predictor and a 
learning controller. The output of each module is an action. 
The situation predictor estimates the current environment 
dynamics and outputs the expected situation of next time. The 
learning controller selects and the suitable action and learns a 
value function for the policy of actions, based on the 
“responsibility signal”, which stands for accuracy of the 
estimation of the predictor. The output of the model is 
calculated by the summation of the output of each module 
weighted by the responsibility signal.  

However, MMRL cannot add and integrate (or delete) some 
modules even if the number of the kinds of environments 
increases or decreases. Thus, it is limited with adaptation to 
complex dynamical environments. Besides, the model has a 
problem about power dissipation that is important for 
autonomous robot applications because multiple modules can 
be active simultaneously by selecting multiple modules. 
Then, we propose the advanced learning model, which selects 
only one module and has functions of addition and integration 
of modules. We show the effectiveness of the proposed model 
in simulations by comparing MMRL. 
 

2. Learning Model 
We propose a new modular learning model in Figure 1. It 

consists of three elements: expert modules, an environmental 
observer (EO) and a policy observer (PO). We define the 
dynamic environment as a set of multiple stationary tasks. The 
expert module has an environmental model (EM) of the 
stationary task and a policy for the task. A policy is set of 
actions to a task. EO is defined as a set of probabilities 
pi( s(t+1) | s(t), a(t) ) (i: index of module, s(t+1), s(t): situation 
at the next time and the present time, respectively, a(t): action 
at the present time). The policy is defined as a(t) = fi(s(t)). The 
structure of the environmental observer and the policy 
observer is also same as the EM and the policy (expressed as 
po and fo), respectively. The value of the probability of EO and 
EM is either 0 or 1.  

Next, we explain the processing procedure.  
0.  The current situation (s(t)) is observed. 
1.  The model (po(s(t) | s(t-1), a(t-1)) = 1) in the current 

environment is memorized by the EO. 
2.  Only the effective policy (fo(s(t-1))) with which robots 

can achieve to the goal in the current environment is 
memorized by the PO.   

3.  The environmental change (change of the task) is 

detected by the EO and environmental change signal is 
generated. When the environment  (subtask) changes, po 
changes from 1 to 0 or from 0 to 1. By using those 
information, the environmental change is found. 

  
3-1. If the environmental change is not detected, the most 

suitable module with the smallest error between the 
EM and the EO for the current environment is selected. 

 
  3-2. If the environmental change is detected, it is decided 

whether the EO and the PO is copied as the EM and 
the policy of the new module (Addition) or unified 
with one of the existing modules (Integration). Then, 
EO and PO are reset.  

    The criterion for addition and integration is as 
follows.  

  - Addition: Po≠Pi for all the existing modules 
- Integration: Po=Pi (if the criterion is satisfied, the 
integration processing is performed: Po∪Pi, 
fo∪fi ) 

 
3. Experiment 
 
3.1. Task Setting 
We choose maze problems that are often used for the test of 

behavior-learning. We prepare the six mazes shown in Figure 
3. We change the kind of the maze in constant time in order to 
add dynamic elements. The degree of resemblance between 
the structures of the mazes is shown in Figure 4. The robot 
selects one of four possible actions: {north, east, south, 
west}. We define selecting an action as “one step”. A trial is 
terminated and the robot is given a positive reward, when the 
robot reaches to the goal. Then, the new trial begins at the start 
point. 
 
3.2. Experimental Results 
 Figure 5 shows the difference of the performance between 
the proposed model and MMRL in case that two mazes: {(a): 
A3-B3, (b):A1, A2} are switched in 100 steps. The vertical 
axis is the number of steps required in a trial. The horizontal 
axis is the number of trials. While, in case of MMRL, the 
number of steps is larger as the degree of resemblance is larger, 
the number of steps does not change much in case of the 
proposed model (the smallest number of steps are realized 
within 200 trials.). 
Figure 6 shows the difference of the total rewards between 

the proposed model and MMRL when we change six mazes 
are switched in T steps. T is a parameter which means the 
interval from a maze to another maze. In view of the total 
rewards, it is confirmed that the proposed model learns the 
expert modules about 5 - 8 times faster than MMRL. 
 
4. Conclusion 
We have proposed a new modular learning model. The model 

can not only adapt to environmental changes faster than 
MMRL by the simulation experiments, but also change the 
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number of modules flexibly. Therefore, it is expected that the 
power dissipation is less than conventional models.  
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Figure 1: Schematic diagram of the proposed model. 
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Figure 3: Maze problem. 
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Figure 4: Degree of resemblance between mazes. 
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(a) : A3, B3( the lowest degree of resemblance) 
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(b) : A3, B3( the highest degree of resemblance) 

Figure 5: Experimental result of change of the number of steps 
(2 mazes, interval T= 100, (a): A3, B3, (b): A1, A2). 
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Figure 6: Experimental result of total rewards for interval T (6 

mazes, during 105 steps). 
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The proposed model is much more stable
 to degree of the resemblance between
 tasks than MMRL .
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