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1. Introduction

The effective implementation of pattern recognition and
learning, which are basic functions for building artificial sys-
tems with capabilities similar to the human brain [1], is of
great technical and practical importance. For this purpose
our research group is developing a flexible architecture,
which is based on the minimum-distance-search associative
memory as a core element. A major first task isto efficiently
implement the additional capabilities of recognition, learn-
ing and also judgement into the associative memory. Fur-
thermore, a sufficient variety of distance measures for the
basi ¢ pattern-matching proces has to be realized. In the COE
program, we are mainly investigating such an associative
memory-based systems, as schematically depicted in Fig. 1,
to enable intelligent data processing similar to the human
brain such as object-feature extraction, object recognition
and learning or even judgement.

2. Distance Measure of an Associative Memory for
Efficient Pattern Recognition

An associative memory has the capability of determin-
ing the nearest match between input-data words and a stored
basis of reference-data words according to a distance mea-
sure. Especially for real-time recognition it will be neces-
sary to implement fast matching up to large absolute mini-
mum distances. In this project, we have developed a fully-
parallel, combined digital/analog realization of the associa-
tive memory’s search function, which allows short nearest-
match times with the Hamming as well as Manhattan dis-
tance measures (Fig. 2) [3, 4]. The chosen associative-
memory approach has in particular a high probability of be-
ing superior to the neural network approach, because there
is no restriction on the type of the stored patterns and inte-
gration in conventional CMOS-technology is easy.

We have tested our architecture with chip designsin
0.6um (Hamming) [3] and in 0.35um (Manhattan) [9] CMOS
technologies. A performance up to the equivalent of a 32bit
computer with 150GOPS/mm? at low power dissipation of a
few mW per mm? could be achieved. We have also proposed
and verified a bank-type associative memory verified with
test chipsin 0.35um CMOS technology [2]. This bank-type
architecture extends the possibility of fully-parallel near-
est-match search to an in principle infinite space of refer-
ence patterns.

Recently, we have extended our associative-memory ar-
chitecture to the realization of the Euclidean distance, which
gives the correct distance between 2 points in vector space.
Key pointsin our solution (Fig. 3) are the application of an
analog squarer for each vector component and the avoidance
of the square-root calculation, which has no influence on
the winner determination.

3. Learning and Optimization of Reference-Patterns

A system concept with realizes high-speed pattern match-
ing and automatic pattern learning has been devel oped on the
basis of an associative memory with short-term and long-term
storage regions (Fig. 4) [8]. The applied learning algorithm
(Fig. 5) uses a 4-step process for each learning cycle: (1)
Nearest-match determination (winner) in the associative
memory for an input pattern. (2) Decision whether the input
pattern is known by the system on the basis of the winner
distance. (3) Increasing memorization strength (rank in the

storage space) of the winner if the input pattern is known. (4)
Learning of the input pattern with a specific rank in the short-
term memory and forgetting the reference pattern with the
lowest rank in the short-term memory if the input pattern is
not known (Fig. 4). Furthermore, an optimization architec-
ture for the learned reference patterns is developed [10].

A CMOS test chip, which implements afully-parallel as-
sociative memory with 64 patterns, the pattern-learning al-
gorithm and the pattern-optimization algorithm has been de-
signed and fabricated (Fig. 6) and is now under measurement.

4. Cell-Network Based Real-time Image Segmentation
Image segmentation is the extraction process of all objects
from natural input images and is the necessary first step of
object-oriented image processing such as object recognition
or object tracking. In this project, we have proposed a cell-
network-based digital image segmentation algorithm/architec-
ture with pixel parallel processing for gray-scale/color images
inreal-timeapplications (Fig. 7) [5, 6]. A CMOStest-chip for the
cell-network, which isthe main functional stage, has been fab-
ricated, in a0.35um CM OS technology and verifies the effec-
tiveness of our proposal. In the performance verification of the
test-chip, high speed segmentation in <9.5usec and low power
dissipation of <36.4mW@10MHz aremeasured. The extrapola
tion resultsto larger image sizes suggest, that QVGA-sizeim-
age segmentation will be possible within 300usec @10MHz at
the 90nm CM OS technology node. Furthermore, we have pro-
posed alow-power and hardware-efficient pipelined segmen-
tation architecture for VGA-size motion pictures, which ap-
plies a subdivided-image approach (SIA) for compact imple-
mentation and a boundary-active-only (BAO) scheme for low-
power dissipation [7]. We have verified the effectiveness of
the proposed architecture with a 51mm? test-circuit in 0.35um
CMOS technology for the segmentation-network core consist-
ing of 41x33 cells (Fig. 8). The segmentation performancefor a
VGA-size input image is 21.8mW power dissipation and
7.49msec segmentation time at 10MHz clock frequency.

5. Conclusion

An overview over our reseach work on an associative
memory-based system with recognition and learning capa-
bility has been given. The next steps towards the complete
system include architecture/circuit development for the adap-
tive pattern learning unit and the feature-extraction unit. This
reguires also the selection of concrete application examples
and the development of a prototype system with recognition
and learning capability.
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Figure 1: Structure of envisaged associative memory-based systems
for the case of avisual input and illustrated with the example of
recognizing and learning different types of cars.
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Figure 3: Architecture concept for an associative memory with
fully-parallel minimum Euclidean-distance search.
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Figure 7: Block diagram of the cell-network-based image segmen-
tation architecture with subdivided-image approach (SIA).
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Figure 2: Block diagram of the compact-associative-memory archi-
tecture with fast fully-parallel match capability according to the
Hamming/Manhattan distance.
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Figure 6: Associative-memory-based automatic pattern learning
chip with 64 patterns. Long/short-term-memory size as well as
the recognition threshold in the algorithm can be set externally.
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1. Extract the object of interest from the input data. For an image as input data, this stage requires
an image segmentation function and a procedure for selecting the segment (or object) of interest.

2. Prepares the data of the selected object for a comparison with the knowledge base of the system
by extracting the objects characteristic features.

3. Knowledge base of the system which includes a search function for finding the best match to an
input pattern from the 2 stage.

4. The leaming stage includes a feedback to the 3¢ stage, the knowledge base, and possibly also to
the 2" stage for the characteristic-feature extraction.

@ Design of associative-memory-based system with reference
pattern learning and recognition
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segmentation-based tracking architecture for moving objects

@ Investigation of realization with 3DCSS platform
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The proposed architecture extends the possibility of fully-parallel nearest-match search to an in
principle infinite space of reference patterns. For search problems with categorizable reference-
data space the power dissipation can be reduced to the value for one bank in the best case.

Features:

# All unit comparators and word comparators
calculate the distance between input pattern

and stored reference patterns in parallel.

= Fast analog word comparison (e.g. comparison
result encoded as static current-sink capability.)

= Analog squarer circuit for realizing the Euclidean
distance function makes the system compact and
easy to realize in hardware.

= Winner search circuitry scales only linear with
the number of reference words R.
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O Research Contents
~Development of low power real-time color
image segmentation chip architecture

O Results

-Digital color image segmentation algorithm
based on region growing approach

~Fully pixel parallel architecture based
on cell network

~Low power operation with boundary-active-only
scheme

-Proposal of with pipeline
of tiled images for large-scale image segmentation
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©® Implementation with FPGA and SOC-ASIC possible

® Trade-off between hardware amount and segmentation speed possible
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L] ociative Memory for Pattern Recognition
»  Fully parallel mixed analog-digital architecture developed and verified
»  Arbitrarily large reference pattern space realizable with bank-type architecture
»  Capability for Hamming, Manhattan and Euclidean distance measures
® Low Power Real-time Image Segmentation
»  Low-power region-growing algorithm with real-time capability developed and
tested
» VLSl integration for large image sizes with conventional CMOS technology
verified by test chip design
® Automatic Associative Memory based Reference-Pattern Learning and Optimization

»  Algorithms for continuous pattern learning and optimization developed and
tested

» VLSl integration suitability verified by test chip design
® Object Tracking using Image Segmentation and Pattern Matching
»  Algorithm capable of multi-object tracking, even for the moving camera case,
developed and tested
» VLSl architecture for tracking-system realization developed and under
verification with FPGA-based demonstration system




