
Associative Memory Based Hardware Design for An OCR System and

Prototyping with FPGA

Ali Ahmadi, M.D.Anwarul Abedin, Kazuhiro Kamimura, Yoshinori Shirakawa, Hans Jürgen Mattausch,
and Tetsushi Koide

Research Center for Nanodevices Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

1. Introduction
Much progress has been already made over the past years on

development of hardware for optical character recognition (OCR)
systems [1] and different movable OCR products are presently in
the market [2] but yet they hardly ever afford the desired
robustness and hardware size, simultaneously. In this research we
propose an associative memory based OCR system for real-time
character recognition implemented in an FPGA architecture. The
prototype of associative memory we use here as the main classifier
is already designed in our lab [3] and has a mixed analog-digital
fully-parallel architecture for nearest Hamming/ Manhattan-
distance search. In this work, to have a fast prototyping the OCR
preprocessing steps as well as the associative memory unit are
mapped on the FPGA and the system performance is evaluated
with some real data samples.

2. OCR Processing Units
The main steps considered for OCR process are: data reading,

binarizing, noise removal, image labeling, segmentation, and
classification. In data reading step the data of each text line are
scanned continuously as a sequence of thin frames by moving a
reading device (scanner sensor) on the text. The frames between
each two word spaces are collected and form a larger frame as a
gray-scale bitmap array which contains all the word characters. In
the binarizing step this frame is binarized to a simple black-white
bitmap by taking a local threshold value extracted via a mean
filter. In order to remove noise from the frame, a median filter
with neighborhood of 2×2 is applied. Next, by employing a
sequential labeling algorithm different segments of the image
frame are labeled and segments larger than a threshold level are
recognized as a single character. Further detail about labeling
algorithm is given in the next Section.

To have an accurate classification the size of each character is
normalized to 16×16 pixels before classification. We use a
bilinear interpolation algorithm for resizing the character bitmap.
The last and main step of the process is character classification
which is carried out by a nearest-distance search algorithm
applying the associative memory. The normalized segmented
character is matched as a 256 bits vector to a number of reference
patterns using the Manhattan distance measure and the reference
pattern with minimum distance is considered as the winner class.

Figure 1 shows a simple schematic of the associative memory
used as the main classifier of the system. A number of k-bit digital
subtraction and absolute-value calculation units compare the W
binaries in all rows of the memory field with the reference data in
parallel. Low power dissipation of the system is achieved by an
individual power regulation from the signal-regulation units for
each input-signal source. The transistor-count is only 6 per row.
More detailed information about the associative memory
performance can be found in [3]. Table 1 shows the characteristic
performance data of designed associative memory depending on
the Hamming and Manhattan distance measure.

3. System Prototyping with FPGA
Major blocks of preprocessing steps are designed and

implemented in an FPGA architecture. We use the Altera Stratix
family DSP development kit as the main platform. Figure 2 shows
the schematic of the binarizing block. As is explained in Section 2,

a mean filter is used for determining the local threshold values.
Each image frame is read as a sequence of pixels and as can be
seen in Fig. 2, eight registers (DFF and FIFO), preparing different
delay times, are used to provide the 8 neighborhood points for each
pixel. The binarizing process is implemented using 13 operators
including 8 registers, a parallel-adder, divider, and comparator.

The hardware design used for mean filter in binarizing block can
be generalized to all finite impulse response (FIR) filters and so is
applied in noise removing block (as a median filter) and labeling
block, as well. In the labeling process, we keep the labels of
preceding neighbor pixels (4 pixels’ labels) and decide if the
current pixel belongs to one of the preceding labels or gets a new
label. The labels of all image pixels are then extracted and written
in the label memory in this way. In case of facing with equivalence
labels (like in character V) the label equivalences are recorded in a
local table (two buffers SLB1 and SLB2). Once the labeling
process is terminated, the image memory is scanned once again for
segmentation task. Figure 3 depicts the algorithm used for
segmentation. We scan the label memory N times each time
searching label Li (i=1…N). The label read from memory is then
searched within the SLB1 buffer and if found, will be replaced with
the equivalent label from SLB2. The addresses of pixels with label
Li are written in a new memory (SM) as a distinct segment Li.
Next, the boundaries of segment Li are identified and a new
segment vector with binary values 0 and 1 is generated for this
boundary based on the addresses saved in SM memory.

As for modeling the fully-parallel functionality of the associative
memory in the FPGA, four dual-port SRAM memory blocks each
containing 32 data words are applied. Taking this structure and a
memory I/O bus of 256 bits width, we can have 16 parallel
matchings within one clock cycle. Figure 4 shows a simple
schematic of the design.

The design is described in Verilog-HDL and synthesized using
the Synplify-pro compiler and then implemented in the Altera
FPGA family using the QuartusII tool for placement and routing.
Using Stratix DSP development kit EP1S80 and a clock frequency
of 50 MHz, a total number of 2,337 logic cells and 36 Kbits of
SRAM memory are used for placement and routing of associative
memory part. The timing simulation results are reported in the next
Section.

4. Analysis of Simulation Results
We examined the system with some real data samples of

English text characters and evaluated the results with a software
program. A total number of 16 data set including different fonts
(Times and Arial), noisy data, color background data, slightly
rotated data, and data with different resolution were gathered and
tested. Each set contained 26 characters and as mentioned before,
each data sample is considered as a 256 bits vector. The
experimental results of distance-matching between data vectors
and reference patterns showed overall of 2 misclassification cases
(0.5%) for noisy data and zero case for other data type. The mini-

mum distance between winner and nearest-loser over all the data
samples is averagely 2.5 which is not yet reliable enough. The
minimum distance of winner and second loser is 13 bits.

Figure 5(a) indicates the winner-input distance for different data
samples. The average winner-input distance for all the input
samples was calculated and found as 31 bits. Having this distance
and referring to plot of Fig. 5(b) which gives the typical winner
search time of the associative memory according to winner-input
distance, we can find the average search time of 128 ns for
classification of each test sample. This is the search time within
128 reference patterns and will be changed in case of increase in
reference patterns number. Comparing to other OCR products
existing in the market, however this prototype model is not still

robust enough but is advantageous in terms of classification time
and hardware size. We are also planning to develop the system
with a learning algorithm for optimizing the reference patterns
selection process.

References
[1] http://www.ocr.researchcccc.com/directory/online-ocr.html
[2] For example Wizcom Quicktionary a mobile scanner dictionary, and

IrisPen a handheld scanner pen.
[3] Y.Yano, T. Koide, H.J. Mattausch, Associative Memory with Fully

Parallel Nearest-Manhattan-distance Search for Low-power Real-time
Single-chip Applications, Proc. of ASP-DAC’2004, pp. 543 – 544,
Japan, 2004.

Fig. 1. Associative memory architecture.

Table 1: Characteristic data of designed associative memory test chip.

Distance Measure Hamming Manhattan (5 bit)
Memory Field 32 x 768 128 x 80
Technology 0.6 µm CMOS 0.35 µm CMOS
Area 9.11 mm2 8.6 mm2
Search Range 0 - 400 bit 0 - 480 bit
Winner-Search Time < 70 nsec < 190 nsec
Performance 1.34 TOPS 160 GOPS
Power Dissipation 43 mW 91 mW
Supply Voltage 3.3V 3.3V

Fig. 3. Flowchart of segmentation procedure. N is number of distinct labels
(Li , i=1…N), SLB1, SLB2 are buffers for recording equivalent labels, SM
is a temporary memory for saving addresses of pixels with label Li, and
cmin, cmax, rmin, rmax are min. row, max. row, min. column, max. column of
segment Li, respectively.

Fig. 2. The schematic of the binarizing block using local threshold
algorithm implemented in an FPGA architecture.

Fig. 4. The schematic of associative memory mapped with 4 dual-port
RAMs in an FPGA architecture. 16 matchings are performed within each
clock cycle.

Fig. 5 (a). Winner-Input distance for different data of font Times. (b)
Average winner search times in associative memory.

Read label of each pixel
(L=label)

Replace L with

SLB2 label

If L = Li

Write pixel address
in SM memory

Calculate boundaries of segment Li

For pixels of segment Li whose addresses
are in SM, put a One in segment vector

otherwise put a Zero

Output the segment vector

S
can label m

em
ory

S
can S

M

m
em

ory

N
times

yes

yes

Update values rmin, rmax, cmin, cmax

If L belongs to
SLB1

RAM1

RAM2

RAM3

RAM4

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Comp1

Comp2

Comp3

Comp4

MUX1

MUX2

MUX3

MUX4

Buffer

Buffer

Buffer

Address
Counter

Parallel
2-ports
Memories

Parallel
Selectors

Parallel
Comparators

XOR
Matching

Clock

Winner
distance

Winner
address

Memory
number

Input
data Buffer 256

80 Win ner-Inp

10

20

30

40

50

60
70

Samples

0

1 6 11 16 21 26

Normal Noisy Background Rotated

ut distance (B it)W
inner-Input distance (B

it)

http://www.ocr.researchcccc.com/directory/online-ocr.html

Associative Memory Based Hardware Design
for An OCR System and Prototyping with FPGA

A. Ahmadi, M.A. Abedin, K. Kamimura, Y. Shirakawa, H.J. Mattausch, and T. Koide
Research Center for Nanodevices and Systems, Hiroshima University

NTIP

Hiroshima University
Research Center for Nanodevices and Systems (RCNS)

System Design and Architecture Research Division

Background & Research Objective

Optical character recognition (OCR) systems
have been widely used in recent years and
various approaches are applied for developing
their hardware and processing algorithms.

As for a small mobile OCR, ex. a cognitive pen,
usually an ideal model is thought as a system
with high accuracy and speed, and minimum
hardware size & power dissipation at the
same time.

We propose an associative memory based
OCR system for real-time character
recognition implemented in an FPGA
architecture.

An associative memory-based OCR with
qualifications:

1- Recognition of printed characters & words
2- Robustness to Noise, Rotation, Color
3- Applicable to different Fonts
4- High Speed

55-- Learning capabilityLearning capability

Hardware Implementation

Processing Steps

Experimental Results

Conclusions

Data reading
(Each word’s frames as a bitmap)

Character segmentation
(By taking a threshold level)

Binarizing bitmap image

Noise Removal
(Median filter)

Size normalization
(Resize character bitmap to 16×16 pixels)

Classification
(Associative memory with nearest-match Manhattan

distance and 128 reference patterns)

Block diagram of system steps.

Real-time data reading problems:
-Rotation & shift

-High rate of noise

-High speed of recognition
needed

A Vertical Projection Profile
(VPP) of the characters is

used to find the space
between word.

Data Reading

Color (RGB 24 bits) Gray (8 bits) Binary (2bits)

Thresholding

Local thresholding

For each pixel a
neighborhood of
size k is taken
and a local
threshold is
defined by mean
of pixels.kknb ×=

∑= ji I
nb

Th 1

],[kikij +−∈ Hir
k

k

Binarizing

N: number of separate labels (Li , i=1…N)

SLB1, SLB2: buffers for recording
equivalent labels

SM: temporary memory for saving
addresses of pixels with label Li

rmin, rmax, cmin, cmax: min row, max row, min
column, max column of segment Li

Flowchart of data segmentation (after labeling).

1- The proposed associative memory based OCR is
advantageous in terms of classification speed and
hardware size.

2- Due to fully parallel pattern-matching used in the
associative memory the average search time for each
character is obtained as 129 ns which is very much faster
than other existing OCRs.

3- We are planning to equip the system with a learning
algorithm which updates and optimizes reference patterns
continuously over the time using two types of short term
and long term memory.

Distance Measure Hamming Manhattan (5 bit)

Memory Field 32 x 768 128 x 80

Technology 0.6 µm CMOS 0.35 µm CMOS

Area 9.11 mm2 8.6 mm2

Search Range 0 - 400 bit 0 - 480 bit

Winner-Search Time < 70 nsec < 190 nsec

Performance 1.34 TOPS 160 GOPS

Power Dissipation 43 mW 91 mW

Supply Voltage 3.3V 3.3V

Architecture of associative memory used as the
main classifier of the system.

Characteristic specifications of associative
memory designed as an LSI chip

The schematic of binarizing block using local threshold algorithm implemented in an
FPGA architecture. The core part of algorithm can be generalized for implementation

of any FIR filter.

RAM1

RAM2

RAM3

RAM4

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Comp1

Comp2

Comp3

Comp4

MUX1

MUX2

MUX3

MUX4

Buffer

Buffer

Buffer

Address
Counter

Parallel
Comparators

Parallel
Selectors

Winner
distance

Memory
number

Winner
address

Input
data

Clock

Buffer

XOR
Matching

Parallel
2-ports

Memories

256

RAM1

RAM2

RAM3

RAM4

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Ones
Adder

Comp1

Comp2

Comp3

Comp4

MUX1

MUX2

MUX3

MUX4

Buffer

Buffer

Buffer

Address
Counter

Parallel
Comparators

Parallel
Selectors

Winner
distance

Memory
number

Winner
address

Input
data

Clock

Buffer

XOR
Matching

Parallel
2-ports

Memories

256

Preprocessing steps are designed and implemented in an

FPGA architecture. We use Altera Stratix DSP development

kit EP1S80 with a clock of 50 MHz as the main platform.

The schematic of labeling block. Using Stratix DSP development kit EP1S80 a total
number of 76 logic cells and 328 Kbits of SRAM memory are used for placement and

routing.

The schematic of associative memory mapped with 4 dual-port RAMs in an FPGA
architecture. 16 matchings are performed within each clock cycle.

Read label of each pixel
(L=label)

If L belongs to SLB1

Replace L with
SLB2 label

If L = Li

Write pixel address in
SM memory

Calculate boundaries of segment Li

For pixels of segment Li whose addresses are in
SM, put a One in segment vector

otherwise put a Zero

Output the segment vector

S
ca

n
 lab

el m
em

o
ry

S
can

 S
M

m

em
o

ry

N
times

yes

yes

Update values rmin, rmax, cmin, cmax

Read label of each pixel
(L=label)

If L belongs to SLB1

Replace L with
SLB2 label

If L = Li

Write pixel address in
SM memory

Calculate boundaries of segment Li

For pixels of segment Li whose addresses are in
SM, put a One in segment vector

otherwise put a Zero

Output the segment vector

S
ca

n
 lab

el m
em

o
ry

S
can

 S
M

m

em
o

ry

N
times

yes

yes

Update values rmin, rmax, cmin, cmax

The prototype of associative memory we use here as the main
classifier is already designed in our lab as an LSI chip and has a

mixed analog-digital fully-parallel architecture for nearest
Hamming/ Manhattan-distance search

Associative memory chip

The system performance and search time were evaluated by using some real data
samples. A total number of 16 data set including different fonts (Times and Arial) and
different data type and resolution was used.

Times font

Noisy data

Color
background

Rotated data
(+5ْ)

Rotated data
(-5ْ)

associative memory based OCR Background

Some text samples used as input data.

Sample
Type dpi Char.

no.

Correct
classific
ation no.

Mis-
classific
ation no.

Classific
ation to

other
fonts

Min.
dist. of

winner &
nl

Min.
dist. of

winner &
2nd loser

Avg.
dist. of

winner &
input

Misclass
ified

cases

Normal 200 26 26 0 0 1 7 28

Noisy 200 26 25 1 1 1 10 32.9 g(A) g(
T), i l

Backgrnd 200 26 25 1 0 2 15 35.8 i(T) j(A)

Rotated 200 26 26 0 1 3 7 44.1 i(A) i(T)

Normal 300 26 26 0 0 5 14 21

Noisy 300 26 26 0 0 2 10 26

Backgrnd 300 26 26 0 0 5 19 25.1

Rotated 300 26 26 1 1 1 12 40.1 h b,
i(A) i(T)

Total 208 206 2 3 2.5 13 31.6

Classification results for different data type font: Times, Small characters
(nl: Nearest l321oser)

Samples

0

10

20

30

40

50

60
70
80

1 6 11 16 21 26

Normal Noisy Background Rotated
 W inner-Input dis tance (Bit) W

inner-Input distance (B
it)

Winner-Input distance for different types of data
for font Times Winner search times in associative memory

Average winner-input
distance for test
samples: 32 bits

Average search time:
129 ns

Which is extremely faster
than other existing OCR

systems.

	Research Center for Nanodevices Systems, Hiroshima Universit
	1. Introduction
	2. OCR Processing Units
	References

