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1. Introduction 
Much progress has been already made over the past years on 

development of hardware for optical character recognition (OCR) 
systems [1] and different movable OCR products are presently in 
the market [2] but yet they hardly ever afford the desired 
robustness and hardware size, simultaneously. In this research we 
propose an associative memory based OCR system for real-time 
character recognition implemented in an FPGA architecture. The 
prototype of associative memory we use here as the main classifier 
is already designed in our lab [3] and has a mixed analog-digital 
fully-parallel architecture for nearest Hamming/ Manhattan-
distance search. In this work, to have a fast prototyping the OCR 
preprocessing steps as well as the associative memory unit are 
mapped on the FPGA and the system performance is evaluated 
with some real data samples.  

2. OCR Processing Units 
The main steps considered for OCR process are: data reading, 

binarizing, noise removal, image labeling, segmentation, and 
classification. In data reading step the data of each text line are 
scanned continuously as a sequence of thin frames by moving a 
reading device (scanner sensor) on the text. The frames between 
each two word spaces are collected and form a larger frame as a 
gray-scale bitmap array which contains all the word characters. In 
the binarizing step this frame is binarized to a simple black-white 
bitmap by taking a local threshold value extracted via a mean 
filter. In order to remove noise from the frame, a median filter 
with neighborhood of 2×2 is applied. Next, by employing a 
sequential labeling algorithm different segments of the image 
frame are labeled and segments larger than a threshold level are 
recognized as a single character. Further detail about labeling 
algorithm is given in the next Section.  

To have an accurate classification the size of each character is 
normalized to 16×16 pixels before classification. We use a 
bilinear interpolation algorithm for resizing the character bitmap. 
The last and main step of the process is character classification 
which is carried out by a nearest-distance search algorithm 
applying the associative memory. The normalized segmented 
character is matched as a 256 bits vector to a number of reference 
patterns using the Manhattan distance measure and the reference 
pattern with minimum distance is considered as the winner class. 

Figure 1 shows a simple schematic of the associative memory 
used as the main classifier of the system. A number of k-bit digital 
subtraction and absolute-value calculation units compare the W 
binaries in all rows of the memory field with the reference data in 
parallel. Low power dissipation of the system is achieved by an 
individual power regulation from the signal-regulation units for 
each input-signal source. The transistor-count is only 6 per row. 
More detailed information about the associative memory 
performance can be found in [3]. Table 1 shows the characteristic 
performance data of designed associative memory depending on 
the Hamming and Manhattan distance measure. 

3. System Prototyping with FPGA 
Major blocks of preprocessing steps are designed and 

implemented in an FPGA architecture. We use the Altera Stratix 
family DSP development kit as the main platform. Figure 2 shows 
the schematic of the binarizing block. As is explained in Section 2, 

a mean filter is used for determining the local threshold values. 
Each image frame is read as a sequence of pixels and as can be 
seen in Fig. 2, eight registers (DFF and FIFO), preparing different 
delay times, are used to provide the 8 neighborhood points for each 
pixel. The binarizing process is implemented using 13 operators 
including 8 registers, a parallel-adder, divider, and comparator.  

The hardware design used for mean filter in binarizing block can 
be generalized to all finite impulse response (FIR) filters and so is 
applied in noise removing block (as a median filter) and labeling 
block, as well. In the labeling process, we keep the labels of 
preceding neighbor pixels (4 pixels’ labels) and decide if the 
current pixel belongs to one of the preceding labels or gets a new 
label. The labels of all image pixels are then extracted and written 
in the label memory in this way. In case of facing with equivalence 
labels (like in character V) the label equivalences are recorded in a 
local table (two buffers SLB1 and SLB2). Once the labeling 
process is terminated, the image memory is scanned once again for 
segmentation task. Figure 3 depicts the algorithm used for 
segmentation. We scan the label memory N times each time 
searching label Li (i=1…N). The label read from memory is then 
searched within the SLB1 buffer and if found, will be replaced with 
the equivalent label from SLB2. The addresses of pixels with label 
Li are written in a new memory (SM) as a distinct segment Li. 
Next, the boundaries of segment Li are identified and a new 
segment vector with binary values 0 and 1 is generated for this 
boundary based on the addresses saved in SM memory.  

As for modeling the fully-parallel functionality of the associative 
memory in the FPGA, four dual-port SRAM memory blocks each 
containing 32 data words are applied. Taking this structure and a 
memory I/O bus of 256 bits width, we can have 16 parallel 
matchings within one clock cycle. Figure 4 shows a simple 
schematic of the design. 

The design is described in Verilog-HDL and synthesized using 
the Synplify-pro compiler and then implemented in the Altera 
FPGA family using the QuartusII tool for placement and routing. 
Using Stratix DSP development kit EP1S80 and a clock frequency 
of 50 MHz, a total number of 2,337 logic cells and 36 Kbits of 
SRAM memory are used for placement and routing of associative 
memory part. The timing simulation results are reported in the next 
Section.  

4. Analysis of Simulation Results 
We examined the system with some real data samples of 

English text characters and evaluated the results with a software 
program. A total number of 16 data set including different fonts 
(Times and Arial), noisy data, color background data, slightly 
rotated data, and data with different resolution were gathered and 
tested. Each set contained  26 characters and as mentioned before, 
each data sample is considered as a 256 bits vector. The 
experimental results of distance-matching between data vectors 
and reference patterns showed overall of 2 misclassification cases 
(0.5%) for noisy data and zero case for other data type. The mini- 



mum distance between winner and nearest-loser over all the data 
samples is averagely 2.5 which is not yet reliable enough. The 
minimum distance of winner and second loser is 13 bits. 

Figure 5(a) indicates the winner-input distance for different data 
samples. The average winner-input distance for all the input 
samples was calculated and found as 31 bits. Having this distance 
and referring to plot of Fig. 5(b) which gives the typical winner 
search time of the associative memory according to winner-input 
distance, we can find the average search time of 128 ns for 
classification of each test sample. This is the search time within 
128 reference patterns and will be changed in case of increase in 
reference patterns number. Comparing to other OCR products 
existing in the market, however this prototype model is not still 

robust enough but is advantageous in terms of classification time 
and hardware size. We are also planning to develop the system 
with a learning algorithm for optimizing the reference patterns 
selection process. 
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Fig. 1. Associative memory architecture. 
 

Table 1: Characteristic data of designed associative memory test chip. 
 

Distance Measure  Hamming Manhattan (5 bit) 
Memory Field  32 x 768 128 x 80 
Technology  0.6 µm CMOS 0.35 µm CMOS 
Area  9.11 mm2 8.6 mm2 
Search Range  0 - 400 bit 0 - 480 bit 
Winner-Search Time < 70 nsec < 190 nsec 
Performance  1.34 TOPS 160 GOPS 
Power Dissipation  43 mW 91 mW 
Supply Voltage  3.3V 3.3V 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Flowchart of segmentation procedure. N is number of distinct labels 
(Li , i=1…N), SLB1, SLB2 are buffers for recording equivalent labels, SM 
is a temporary memory for saving addresses of pixels with label Li, and 
cmin, cmax, rmin, rmax are min. row, max. row, min. column, max. column of 
segment Li, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The schematic of the binarizing block using local threshold 
algorithm implemented in an FPGA architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The schematic of associative memory mapped with 4 dual-port 
RAMs in an FPGA architecture. 16 matchings are performed within each 
clock cycle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 (a). Winner-Input distance for different data of font Times. (b) 
Average winner search times in associative memory. 
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Background & Research Objective

Optical character recognition (OCR) systems 
have been widely used in recent years and 
various approaches are applied for developing 
their hardware and processing algorithms. 

As for a small mobile OCR, ex. a cognitive pen, 
usually an ideal model is thought as a system 
with high accuracy and speed, and minimum 
hardware size & power dissipation at the 
same time. 

We propose an associative memory based 
OCR system for real-time character 
recognition implemented in an FPGA 
architecture.

An associative memory-based OCR with 
qualifications:

1- Recognition of printed characters & words
2- Robustness to Noise, Rotation, Color
3- Applicable to different Fonts
4- High Speed

55-- Learning capabilityLearning capability
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Experimental Results

Conclusions
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Character segmentation
(By taking a threshold level)
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(Median filter)

Size normalization
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Classification
(Associative memory with nearest-match Manhattan 

distance and 128 reference patterns)

Block diagram of  system steps.

Real-time data reading problems:
-Rotation & shift

-High rate of noise

-High speed of recognition 
needed

A Vertical Projection Profile 
(VPP) of the characters is 

used to find the space 
between word.
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N: number of separate labels (Li , i=1…N)

SLB1, SLB2: buffers for recording 
equivalent labels

SM: temporary memory for saving 
addresses of pixels with label Li

rmin, rmax, cmin, cmax: min row, max row, min 
column, max column of segment Li

Flowchart of data segmentation (after labeling).

1- The proposed associative memory based OCR is 
advantageous in terms of classification speed and 
hardware size.

2- Due to fully parallel pattern-matching used in the 
associative memory the average search time for each 
character is obtained as 129 ns which is very much faster 
than other existing OCRs.

3- We are planning to equip the system with a learning 
algorithm which updates and optimizes reference patterns 
continuously over the time using two types of short term 
and long term memory.

Distance Measure Hamming Manhattan (5 bit)

Memory Field 32 x 768 128 x 80

Technology 0.6 µm CMOS 0.35 µm CMOS

Area 9.11 mm2 8.6 mm2

Search Range 0 - 400 bit 0 - 480 bit

Winner-Search Time < 70 nsec < 190 nsec

Performance 1.34 TOPS 160 GOPS

Power Dissipation 43 mW 91 mW

Supply Voltage 3.3V 3.3V

Architecture of associative memory used as the 
main classifier of the system.

Characteristic specifications of associative 
memory designed as an LSI chip

The schematic of binarizing block using local threshold algorithm implemented in an 
FPGA architecture. The core part of algorithm can be generalized for implementation 

of any FIR filter.
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Preprocessing steps are designed and implemented in an 

FPGA architecture. We use Altera Stratix DSP development 

kit EP1S80 with a clock of 50 MHz as the main platform.

The schematic of labeling block. Using Stratix DSP development kit EP1S80 a total 
number of 76 logic cells and 328 Kbits of SRAM memory are used for placement and 

routing.

The schematic of associative memory mapped with 4 dual-port RAMs in an FPGA 
architecture. 16 matchings are performed within each clock cycle.
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The prototype of associative memory we use here as the main 
classifier is already designed in our lab as an LSI chip and has a 

mixed analog-digital fully-parallel architecture for nearest 
Hamming/ Manhattan-distance search

Associative memory chip

The system performance and search time were evaluated by using some real data 
samples. A total number of 16 data set including different fonts (Times and Arial) and 
different data type and resolution was used.
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