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Abstract 
Associative memories are beneficial in intelligent 

information processing for purposes such as pattern matching 
for object recognition. In a fully-parallel associative memory, 
the stored reference data is compared with input data by 
checking the distance according to a distance measure. The 
reference data with the minimum distance is called winner. 
For this pattern matching process the Euclidean distance 
measure is most desirable, because it correctly represents the 
distance between two points in an N-dimensional vector 
space. Here, a fully-parallel associative memory architecture 
is proposed which searches the winner based on the minimum 
Euclidean distance between input pattern and previously 
stored reference patterns. 
 
1. Introduction 

An associative memory system with searching 
capability for the minimum distance is a major part of 
attention in the field of information processing like image 
compression and pattern recognition [1].  An associative 
memory can perform recognition by means of computing the 
distances between an incoming pattern and stored reference 
patterns. Architectures for fully-parallel Hamming distance 
search [2] and winner-search according to the Manhattan 
distance [3] have been proposed. Both Hamming and 
Manhattan distance can be represented by, 
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where, S = {S1, S2, . . . . , Sw} and R = {R1, R2, . . . . , Rw} are 
input and reference data, respectively. D is called the 
Hamming distance, when Si and Ri are 1-bit binaries. D is 
called the Manhattan distance, when Si and Ri are n-bit 
binaries (n>1). A more desirable distance measure used in 
many effective algorithms for real applications is however the 
Euclidean distance, which is represented by, 
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Euclidean distance gives the correct distance 
between two points in vector space and is therefore more 
accurate than the Manhattan distance. A number of circuits 
for implementing Euclidean distance in hardware are 
presented in the literature [4-5]. However a major drawback 
of most circuits is their limited range of operation and 
relatively large size. Euclidean distance hardware written in 
VHDL proposed in [6], is a sequential one. It uses a 
completely digital circuit consisting of multiplier, adder, 
register and square root circuits and requires a huge number 
of transistors making it not suitable for fully-parallel 
associative memory hardware. Euclidean distance 
computation circuits generally require the square operation 
and the complicated square root operation. Therefore, a 
practical solution for a fully-parallel associative memory, 
which requires many Euclidean-distance computation circuits 
for performing the parallel minimum Euclidean-distance 
search, does not exist. In this paper, a novel fully-parallel 
associative memory architecture is proposed, which uses a 

mixed digital-analog Euclidean-distance calculation circuit 
for searching the winner. 
 
2. Associative Memory Architecture for 

Minimum Euclidean Distance Search 
 

For solving the problem of finding the pattern with 
the nearest Euclidean distance it is sufficient to compare 
square distances only. This is possible, because in pattern 
matching only comparing of the relative magnitude of the 
distances is necessary and because the square root does not 
change this relative magnitude. Therefore, the circuitry for 
calculating the square roots can be avoided. 

The structural blocks of the proposed compact 
associative memory with fully-parallel match capability 
according to the Euclidean distance is shown in Fig. 1. The 
main functional units are search-data storage circuit, 
row/column decoder and read/write circuit, the memory field, 
winner-line-up amplifier (WLA) and winner-take-all circuit 
(WTA). This architecture has been used previously [3] to 
realize an associative memory with minimum Manhattan-
distance search capability. The extension to Euclidean-
distance search deals with the analog part from unit-
comparison circuit (UC) in the memory field up to the 
winner-take-all circuit (WTA). This analog part constitutes a 
multi-stage minimum-distance-search circuit. At the output of 
the WTA a transformation to digital output signals is carried 
out, indicating whether the reference pattern of the respective 
row is the winner or loser. 

Architecture of the proposed Euclidean distance 
search memory field is shown in Fig. 2. Here the digital k-bit 
subtractor and absolute value calculation units compare the 
W binaries, each with k-bit, in all rows of the memory field in 
parallel with the reference data. The digital output of the 
subtractor is then converted into analog current using a 
current converter (CC). To realize the CC function the gates 
of the CC-transistors are connected to the corresponding k-bit 
output-signal lines of the unit comparator and their drains are 
connected together to add the analog currents of all CC-
transistors. The width of each CC-transistor, 2k-1×W0, varies 
depending on its bit position in the binary so as to correctly 
distinguish the weight of each bit. The analog currents from 
each CC are then squared using analog current squarer 
circuits (Fig. 3) [7], which exploit the square-law 
characteristics of the MOS transistor drain current as a 
function of gate voltage, when operated in the saturation 
region. Finally, the output currents from all squarer circuits 
are added to get a Euclidean distance equivalent current.  

In the associative memory core, the match lines are 
processed through analog circuits (WLA) that pre-amplify the 
match lines and restrict the large variety of possible analog 
outputs to a small range by self-regulation. The WLA 
amplifies the differences of current signals between winner 
and losers and regulates the winner signal to a suitable level 
for further distance amplification. The results are then fed to 
a WTA network for recognizing the winner and the losers 
precisely. 



 The initial job of the WTA circuit is to amplify 
winner-loser distances by voltage-current-voltage 
transformations. In order to reduce the negative effects from 
fabrication induced miss-match of corresponding transistors 
in different rows and to improve the reliability for large 
winner-input distances, 5 stages of the common-source 
WTA-configuration is used. The final decision circuit in 
WTA consists of inverters with an adjusted switching 
threshold. It generates a “1” for the winner row and a “0” for 
each loser row.  

The correct function and the performance of the 
proposed architecture is confirmed using HSPICE simulation 
(0.35µm technology) for 128 reference patterns with 16 
binaries each 5-bit long. Simulated winner-search time of the 
proposed architecture as a function of the distance between 
winner and input-data word for distances of 1, 2 and 5 
between winner and nearest-loser row is shown in Fig. 4. The 
circuit successfully finds the winner for a wide range of 
input-winner distances. 
 

3. Conclusion 
 In this paper we have proposed a fully-parallel 
associative memory architecture realizing minimum 
Euclidean distance search which uses a mixed digital-analog 
Euclidean-distance calculation circuit and a fast analog 
winner search circuit and verified the architecture by circuit 
simulation. Using an analog squarer circuit for realizing the 
Euclidean distance function makes the system compact and 
easy to realize in hardware.  
 Future work includes the design, measurement and 
evaluation of a test chip and verification of the usefulness of 
the fully-parallel associative memory by designing a 
complete application system.  
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Fig. 2. Euclidean Distance Search Associative  
Memory Architecture. 

Fig. 1. Construction of the Fully-parallel Associative Memory. 

Fig. 4. Winner Search Time Fig. 3. Analog Current Squarer Circuit 
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1. Hamming: The number of positions in two strings of equal length 
for which the corresponding elements are different.

If A = 1 0 1 1 1 0 1 and  
B = 1 0 0 1 0 0 1

Hamming distance 
between A and B is 2

2. Manhattan: Distance between two points measured along axes 
at right angles.
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Find the nearest match for an input-data   
of  W bit length among R reference data
words.

Nearest match (winner) in an Associative 
Memory operation is determined by the 
minimum with respect to a distance 
measure.

Associative Memory Functionality

In pattern matching only comparing the relative magnitude of the   
distances is sufficient.
The square root does not change this relative magnitude.
So, the circuitry for calculating the square roots can be avoided.
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Distance Measure Manipulation:

128Reference Patterns
0.35 µm CMOSTechnology

1(One), 2 (Two) and 5(Five)Winner-N. Loser Distance

Euclidean Distance 16, 5-bit BinariesDistance Measure

Winner Search Time

To WLA

Associative memory architecture with fully-parallel search capability 
for minimum Euclidean distance is proposed.

The performance of the associative memory circuit where the Euclidean 
distance is minimum has been verified by HSPICE circuit simulation  
using 0.35 µm CMOS technology for 16, 5-bit binaries with 128 reference 
patterns. 

The circuit successfully finds the winner for a wide range of input-winner  
distances.

☼ Design, measurement and evaluation of a test chip.

☼ Verification of the usefulness of the fully-parallel associative memory 
by designing a complete application system.
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Current equation:

Parameter of the MOS transistors:

Output current:

Taking m = 2 ⇒

Condition:

Average Power Dissipation

℘ Euclidean distance correctly represents the distance between two
points and is more accurate than Manhattan distance.

℘ In content-based image retrieval systems Euclidean distance gives 
better result to determine the similarities between a pair of images.

Winner search time is between 105 and 160 nS.
Average power dissipation of the total circuit 
is less than 343 mW.

Unit storage cells store the reference patterns 
data. They are implemented with 6 transistor 
SRAM cells.

Unit comparators are composed with k-bit  
subtraction and absolute value calculation unit, 
digital distance to analog current converter and 
analog current squarer circuit.

The output currents from all squarer circuits are 
added in the Word comparator unit to get a 
Euclidean distance equivalent current.

Features:
All unit comparators and word comparators  
calculate the distance between input pattern 
and stored reference patterns in parallel.

Fast analog word comparison (e.g. comparison 
result encoded as static current-sink capability.)

Analog squarer circuit for realizing the Euclidean 
distance function makes the system compact and 
easy to realize in hardware.

Winner search circuitry scales only linear with 
the number of reference words R (O(R) complexity).

Application Examples:

Associative Memory

Associative Memory

Fully-parallel Associative Memory Architecture

Structure of the memory part:


