
CAM-Based Huffman Coding Architecture for Real-Time Applications

Takeshi Kumaki, Yasuto Kuroda, Tetsushi Koide and Hans Jürgen Mattausch
Research Center for Nanodevices and Systems, Hiroshima University, 1-4-2, Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527, Japan

Hideyuki Noda, Katsumi Dosaka, Kazutami Arimoto and Kazunori Saito
System Core Technology Div. System Solution Business Group Renesas Technology Corporation 4-1 Mizuhara, Itami-shi, Hyogo, 664-0005, Japan

INTRODUCTION

Huffman coding is probably the best known and most widely
used data compression technique for many software and hardware
applications. Generally Huffman coding needs to prepare a code
word table that contains the information of mapping between the real
data and the code words for encoding. Frequent data is encoded by
short code words and less frequent data is encoded by longer code
words and thus the compression effect is achieved. This mapping
table may be constructed by complete pre-scanning of the real data
before coding. However, such a method takes a long processing
time and large intermediate storage, so that application is difficult,
in particular for real-time encoding. There are two methods for
eliminating this pre-scan time in real-time applications. The first
method which is called Static Huffman coding is to use a known
or default code word table for encoding. The second method which
is called Adaptive Huffman coding is to use an encoding tree,
which is adaptively constructed and maintained at sender as well
as receiver side. While these two methods are often sufficient, they
have a number of remaining problems with respect to flexibility
and implementation. The first method is difficult to use for real-
time applications when the input symbols change their frequency
distribution often as for example in the case of video pictures.
The second method is hard to implement in hardware and has a
negative effect on the compression ratio during phases of construction
(start-up) or reconstruction (changing frequency of symbols) of the
encoding tree.

For overcoming above problem, a novel architecture for Huffman
encoding is proposed. The present paper develops the architecture
concept published in [1], [2]. It uses a Content Addressable Memory
(CAM) for storing the code word table and enabling a fast Huffman
encoding.

PROPOSED ARCHITECTURE

In this section, a CAM-based Huffman coding architecture for real-
time applications is proposed as a novel architecture for Huffman
encoding. The CAM is exploited to implement the symbol table
and to enable fast Huffman encoding in combination with a RAM
storing the code word table. At the same time, the code word table
is reconstructed according to the frequency of received symbols
and is up-dated in real-time. Since the two functions (encoding and
reconstructing) work in parallel, the proposed architecture can keep
high compression ratio and overcome many problems of conventional
Huffman coding. The proposed architecture consists of two functional
blocks, encoder and reconstructor. The block-diagram is shown in
Fig. 1.

The encoder block is composed of a CAM for the symbol table and
a RAM for the code word table and can translate input symbols into
the corresponding Huffman code. Actually two code word tables are
located in the encoder. One of these tables, the active table generates
the code words and the other table, the shadow table prepares an
optimized version of the presently used code word table. The switch
is used to exchange active and shadow table.

The reconstructor block is composed of an assign module and
swap module. The assign module generates an optimized Huffman
code according to the most recent frequency distribution of input

symbols. The corresponding optimized code word table is sent to
the encoder for up-dating the shadow code word table. In case that
the compression ratio value satisfies a threshold condition, the swap
module generates a table exchange signal to the reconstructor and the
assign module. Since active table and shadow table exchange their
role in Huffman encoding according to the most recent frequency
distribution of input symbols, the proposed architecture can keep a
high compression ratio.

Shadow
table

CAM

Assign
module S

w
itc

h

Match address

Exchange signal

Up-date Data

Code word

Swap
module

S
w

itc
h

Reconstructor

Input symbol

Encoder

Active
table

S
w

itc
h

Controller
Input signal

Output signal

M
at

ch
 s

ig
na

l

Fig. 1. Block diagram of the proposed architecture.

PROCEDURE OF HUFFMAN ENCODING

The encoder block is composed of a CAM and two SRAMs for
active table and shadow table. The principle concept of Huffman
encoding is explained in Fig.2. When the CAM receives an input
symbol, this symbol is compared in parallel with stored symbols.
Then the output port of the CAM sends the determined match
address to the corresponding port of the SRAM and finally the
code word is outputted. This block can translate input symbols into
the corresponding Huffman code. Since a conventional CAM needs
just a single-clock-cycle for the comparison process, the proposed
architecture can process fast encoding and replace the slower binary
trees in Huffman encoding algorithms.

Usually encoding architectures which implement a standardized
code word table cannot change the contents in the code word table.
However, the proposed architecture constantly updates the contents of
a shadow table according to the frequency of receiving input symbols.
If the symbol frequency distribution does not fit to the active table
anymore, the proposed architecture can exchange the roles of active
table and shadow table. The proposed architecture has thus a large
flexibility for usage in many applications. Moreover, by preparing
the two code word tables, input symbols are always encoded into
relatively short code words.

PROCEDURE OF OPTIMIZING THE CODE WORD TABLE

The procedure for optimizing and maintaining the shadow table
is shown in Fig.3. This procedure consists of two processes, over-
writing process and order-writing process. The over-writing process
executes the task of optimizing the code word table. For reducing
compressed data size, frequent input symbols have to be assigned to
short-bit length code word. After overflowing of an input-symbol
the specific counter, up-date address and up-date code word are
provided by the assign module. In this example, the code word
“00002” is written into the address “0010” in the first step. In
the next step, the code word “00023” is written into the address
“0000”. Then, the above writing step is repeated till a threshold level

Shadow table

10000001

10000010

10000011

11111001

11111010

0000

0001

0010

1110

1111

01100101 0011

Stored Symbol Address

CAM

00002

00023

00033

fffdf

fffef

0001

0010

1110

1111

000430011

Code WordAddress

Active table

01100101 0011

00043
Din0

S
w
it
c
h

0011

0000

Dout0

Exchange signal

Encode table

change

Shadow table

10000001

10000010

10000011

11111001

11111010

0000

0001

0010

1110

1111

01100101 0011

CAM

01100101 0011

Din0

S
w
it
c
h

0011

Exchange signal

00023

00033

00043

fffdf

fffef

0001

0010

1110

1111

000020011

Active table

0000

00002

Dout0

Fig. 2. Procedure of Huffman encoding with a CAM and two code-word
tables.

for input-symbol specific counter overflow is reached. The order-
writing process executes the task of completing the shadow code
word table. After finishing over-writing process, the shadow table has
some duplicate data in different addresses. The over-writing process
stores the unassigned code words into the not-overwritten addresses
for completing the contents of the shadow table. The writing of these
code words follows the procedure of the order-writing process. The
assign module has a maximum address register, which stores largest
address in the over-writing process. In Fig.3, this register stores the
maximum address “1110”. As a result, the proposed architecture can
construct an ideal optimized code word table.

00002
00023
00033

fffdf
fffef

0000
0001
0010

1110
1111

000430011

Code WordAddress

Default

000530100

00002
00023

fffdf
fffef

0000
0001
0010

1110
1111

000430011

Code WordAddress

000530100

Code Word
00002

Address
0010

Over-write

00023
00002

fffdf
fffef

0000
0001
0010

1110
1111

000430011

Code WordAddress

000530100

Code Word
00023

Address
0000

Over-write

00023
00023
00002

fffef

0000
0001
0010

1110
1111

000430011

Code WordAddress

000530100

Code Word
00033

Address
1110

Over-write

00023

00002

00033
fffef

0000
0001
0010

1110
1111

000430011

Code WordAddress

000530100

Code Word
00043

Address
0001

Order-write

00002

00023

00033

00043

00023

00002

00033
fffef

0000
0001
0010

1110
1111

0011

Code WordAddress

000530100

Code Word
00053

Address
0011

00043
00023

00002

00033
fffef

0000
0001
0010

1110
1111

000530011

Code WordAddress

000630100

Code Word
00053

Address
0011

00043

00053

Finish

Order-write Order-write

Fig. 3. Procedure of optimizing the shadow code word table.

SIMULATION RESULTS

In this section, simulation results for a JPEG application are
presented. The number of compression clock cycles and the size of
the compressed picture are evaluated. Table. I shows the comparison
results for the four pictures of Fig. 4. Each compressed picture size is
evaluated with two different code word tables. Namely a known stan-
dardize code word table and an optimized code word table according
to the proposed architecture. Four Huffman encoding architectures are
compared. Two architectures use a standardized code word table and
are distinguished by RAM-based and CAM-based approaches. The
third architecture applies an optimized code word table, but is purely
RAM-based. The fourth architecture is the proposed architecture. The
size of all compressed pictures with optimized code word table is
clearly lower than the size of compressed pictures with standardized
code word table. Especially, the difference for (D) is very large with

about 40%. The picture type (A) often appears in real applications
but the difference for (A) is only about 3% in compressed picture
size. Nevertheless, it is evident from the picture-size results, that an
optimized code word table architecture is very effective for increasing
the compression ratio. From the aspect of encoding speed, the RAM-
based architecture with optimized code word table needs the largest
number of clock cycles, consisting of encoding clock cycles and
constructing clock cycles for the optimized code word table. The
number of encoding clock cycles is 6 times as many as that of the
proposed arcitecture. The number of constructing clock cycles for
the optimized code word table increases with picture size, and is
about 3,700 times larger than for the proposed arcitecture in case
of picture (B). Therefore, it is difficult to use this architecture for
encoding in real-time applications such as MPEG. On the other
hand, the proposed arcitecture reduces the number of encoding clock
cycles to a small fraction and eliminates the constructing clock cycles
completely. Thus the proposed architecture appears to be the best
solution for encoding in real-time applications.

(D) 598 x 512(c) 192 x 128(A) 514 x 180 (B) 1024 x 768

Fig. 4. Test pictures.

TABLE I
EVALUATED RESULT OF COMPRESSION SIZE AND CLOCK CYCLES.

SRAM CAM Processor CHRC
Number of

clock cycles

JPEG

Architecture

Table standardized optimized

(A) Lenna

30 5 1,950 5

40,209 39,017

SRAM CAM Processor CHRC

standardized optimized

(B) Dawn of the sun

30 5 18,452 5

44,599 35,502

SRAM CAM Processor CHRC

standardized optimized

(C) Texture

SRAM CAM Processor CHRC

standardized optimized

(D) Test screen

Original 246,840 2,359,350

P
ic
tu
r
e

s
iz
e
 [
b
y
te
]

39,075 35,597

Number of

clock cycles

JPEG

Architecture

Table

Original

P
ic
tu
r
e

s
iz
e
 [
b
y
te
]

30 5 593 5 30 5 2,425 5

73,782 308,278

2,380 1,961 11,274 6,7501,973 6,815

CONCLUSION

This paper presented a CAM-based Huffman coding architecture
for real-time applications as a novel architecture for efficient Huffman
encoding. A CAM is exploited to implement fast Huffman encoding,
while an optimized code word table is reconstructed and up-dated
in real-time. It becomes possible to compress in real-time, keep
high compression ratios and apply the proposed architecture to
many compression situations flexibly. Consequently, the proposed
architecture has many realization possibilities and can be used in
hardware for real-time applications.

ACKNOWLEDGMENT

Part of this work has been supported by the 21�� century COE
program, Ministry of Education, Culture, Sports, Science and Tech-
nology, Japanese goverment and a Grant-in-Aid for JSPS Fellows,
175303, 2005.

REFERENCES

[1] T. Kumaki, Y. Kuroda, T. Koide, H. J. Mattausch, H. Noda, K. Dosaka,
K. Arimoto, and K. Saito, “CAM-based VLSI architecture for Huffman
coding with real-time optimization of the code word table,” Proc. IEEE
International Symposium on Circuits And Systems (ISCAS’05), pp. 5202–
5205, May 2005.

[2] ——, “Multi-port CAM based VLSI architecture for Huffman coding with
real-time optimizede code word table,” Proc. IEEE International Midwest
Symposium on Circuits And Systems (MWSCAS’05), Aug. 2005.

CAM-Based Huffman Coding Architecture for Real-time Applications

Takeshi Kumaki, Yasuto Kuroda, Masakatsu Ishizaki, Tetsushi Koide and Hans Jürgen Mattausch

Research Center for Nanodevices and Systems, Hiroshima University

Hideyuki Noda, Katsumi Dosaka, Kazutami Arimoto and Kazunori Saito

System Core Technology Div., System Solution Business Group, Renesas Technology Corporation

l Infrastructure
- Improving network bandwidth, speed and quality

(ex) Dial (56Kbps) ISDN (64/128Kbps)

ADSL (1.5/6Mbps) FTTH (10～100Mbps)

- Development of mobile devices

(ex) mobile phone
call call

picture mail call movie
picture mail videophone

Key Points:
・Small data size

・Low processing time

・Losslessness

Solution:
Effective compression
technique

Huffman coding

l Most widely used lossless compression technique

l Exploited for many software and hardware applications

- JPEG, MPEG, ZIP, LHA, MP3, etc.

- Implemented in many ASICs for digital camera, mobile phone, etc.

Basic Concept Frequent data is encoded by short code word

ATAACCCCGG (A x 3, T x 1, C x 4, G x 2)
10 111 10 10 0 0 0 0 110 110 (A: 10, T: 111. C: 0, G: 110)

1011110100000110110 ATAACCCCGG (uniquely decoded)　
　

The Problems of Huffman Coding

l There are two ways to implement Huffman coding

(a) Static Huffman coding

(Original idea) Iteratively build a binary tree according to frequency
distribution of symbols

This algorithm needs two times scanning of the same data

(Problem) Real-time encoding becomes difficult

(Common technique) Using standardized code word table

(Problem) Compression ratio is decreased if symbol frequency
distribution does not fit to standardized code word table

(b) Adaptive Huffman coding

(Original idea) Binary tree for coding is created on the fly

(Problem) Complexity in hardware implementation

Related Works
l Standardized code word table has been embedded in

conventional architectures.

　Comparison with different architectures capability

(＊) Keeping high compression ratio in spite of frequency distribution of
symbols

Poor

Processor
(Software) SRAM

PLA
(Programmable

Logic Array)
CAM

Speed

Hardware
amount

Flexibility (＊)

×× × ○△

△ × △

××
Data size

○

△ △ △○

×

○: good △: medium ×: poor ××: bad

×

Architecture

Factor

l The CAM-Based Huffman coding Architecture

for Real-time Applications

l Proposed architecture realizes

faster encoding

up-dating of optimized code word table in real-time

l Proposed architecture consists of three functional blocks

Encoder
symbol

match
result

Reconstructor

code word

up-date
Huffman

table

symbol input

start

compare stored
symbols with
input symbols

send match signals
and addresses

to code word table

read
address data

send
code word

Encoder

exchange
code word table

increment
counting value for
matched symbol

conuting value
==

MAX ?

assign new
Huffman code

to shadow table

up-dating
code word table

Reconstructor

YES

YES

NO

NO

compressing ratio
<=

threshold value ?

all counting
value overflow?

YES

NO

l Input symbol

l Compare, sending match
signal to reconstractor
and sending match
address to RAM

l - Generate encoded data

- Increment counter
value

l Up-date code word table

l Change code word table

Shadow
table

CAM

Assign
module S

w
itc

h

Match address

Exchange signal

Up-date Data

Code word

Swap
module

S
w

itc
h

Reconstructor

Input symbol

Encoder

Active
table S

w
itc

h

Controller
Input signal

Output signal

M
at

ch
 s

ig
na

l

Test pictures

The number of compression clock cycles and the

size of compressed picture are evaluated

(A) (B)

(C) (D)

・Compressed picture size of proposed architecture is lower
than for other standardized compression architectures.

・The number of clock cycles needed in proposed architecture
is much lower than for other architectures.

SRAM CAM Processor Proposed
Architecture

Number of
clock cycles

JPEG
[byte]

Architecture
Table standardized optimized

(A) Lenna

30 5 1,950 5

40,209 39,017

SRAM CAM Processor Proposed
Architecture

standardized optimized
(B) Dawn the sun

30 5 18,452 5

44,599 35,502

SRAM CAM Processor Proposed
Architecture

Number of
clock cycles

Architecture
Table standardized optimized

(C) texture

30 5 593 5

SRAM CAM Processor Proposed
Architecture

standardized optimized
(D) test screen

30 5 2,425 5

Original
[byte] 246,840 2,359,350

P
ic

tu
re

 s
iz

e

JPEG
[byte] 2,380 1,961 11,274 6,750

Original
[byte] 73,782 308,278

P
ic

tu
re

 s
iz

e

39,075 35,597

1,973 6,815

Proposed architecture is the best solution for Huffman encoding

Processor
(Software) SRAM

PLA
(Programmable

Logic Array)
CAM

Speed

Hardware
amount

Flexibility (＊)

×× × ○△

△ × △

××

Proposed
Architecture

○

△

○
Data size ○

○

△ △ △○

×

○: good △: medium ×: poor ××: bad

×

Architecture

Factor

Parallel
processing

Consumer Needs
- High speed
- High quality

(ex) Sending and receiving much contents
(data, picture, movie etc.)

- The CAM-Based Huffman coding
Architecture for Real-time
Applications is proposed as a novel
architecture for Huffman encoding

- Effectiveness of Proposed
architecture is verified concerning
JPEG application

Future works

- Improving encoding capability:
sequential parallel

- JPEG, MPEG: combine proposed
architecture with SIMD architecture

- Layout design for VLSI chip

ConclusionSimulation Result for JPEG Application

Coding Flow

Proposed Architecture for Huffman Coding

Background & Motivation Huffman Coding

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

1 1 1 1 1 0

1 1 1 1 1 1

0 0 0 0 0 1

0 0 0 0 0 0

0

0

1

0

0

ad
dr

es
s

de
c.

ad
dr

es
s

en
c.

/m
at

ch
 lo

gi
c

R
A

M
(a

ct
iv

e
ta

bl
e)

R
A

M
(s

ha
do

w
 ta

bl
e)

se
le

ct
or

adress

code word

se
le

ct
or

Huffman code

symbol

re
ad

/w
rit

e
ad

dr
es

s

stored data

m
at

ch
 r

eg
.

se
le

ct
or

reg.

mask

CAM

adress

Huffman code

as
si

gn
 m

od
ul

e

Huffman code

address

controller
threshold value
set up value

cnt. cnt. cnt. cnt. cnt

match address

match signal

+1

2

low compression ratio...

encoded

encoded

table up-date

Fast Huffman encoding

Keep high compression ratio

Hiroshima University

NTIP

Hiroshima University

NTIP

