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1. Introduction
We are working for development of front-end process 

and device technologies of nano-scale MOSFETs. Our 
COE project aims development of 3DCSS system. High-
performance mixed-signal device technologies are 
demanded for such a system. The major our research targets 
are shallow junction formation and metal-gate workfunction 
tuning. These are standard development for CMOS logic 
application., in addition, helpful for improvement of 
RF device performance. Low resistive shallow junction 
formation is indispensable to improve fT that is degraded 
by parasitic series resistance. Gate resistance reduction by 
replacing poly-Si gate with metal gate is effective for fMAX 
improvement. In this abstract, these research activities are 
briefly introduced. 

2. Metalgate tecnology
The most fundamental motivation for development of 

metal gate MOSFETs is solving the gate depletion problem. 
The gate depletion is unavoidable for a poly-Si gate structure 
and is the origin of penalty for effective gate oxide thickness. 
By replacing semiconductor, that is poly-Si, with metal the 
gate depletion problem can be removed. However, it also 
means losing the benefit of workfucntion tuning by doping. 
A dual gate structure that utilizes high and low workfunction 
for p- and n-MOS threshold voltage adjustment and that is 
indispensable for CMOS devices (Fig. 1). Therefore, one of 
the most important development target of metalgate is metal 
workfucntion tuning technology. 

We have working on workfunction tuning of Mo and 
silicides. As shown in Fig.2, metal workfunction of a Mo 
MOS structure can be varied by nitrogen pileup formation 
at Mo/SiO2 interface [1,2]. Electric dipole formed by high 
concentration impurity at the metal/insulator interface 
(Fig.3) is considered to be origin of the workfunction shift 
[3,4]. We have fabricated MOSFETs with the Mo gate and 
found nitrogen redistribution during additional thermal 
treatment process for FET fabrication [5,6]. Thus, metalgate 
workfunction tuning technology must be confirmed through 
integration to the device fabrication. 

Fully silicided (FUSI) gate is also another candidate 
for workfunction tunable metalgate. Though combination 
of ploy-Si gate and silicide is already integrated into 
commercially available devices as polycide gate or salicide 
gate, FUSI dose not remain poly-Si by reaction process of 
poly-Si and metal deposited on the poly-Si. Workfunction of 
a FUSI MOS structure is also tunable by pileup formation 
of impurities at the interface of  silicide and SiO2. We have 

investigated the relationship between silicidation condition 
of NiSi FUSI gate and its workfunction [7,8]. NiSi is the 
most popular material for the FUSI gate. Details of obtained 
results are shown in another paper of this workshop [9]. 
We are also working on Pd2Si as an alternative candidate of 
FUSI gate material [10]. 

3. Shallow Jucntion formation by laser annealing
Currently RTP based annealing technologies are used 

for source and drain (S/D) formation of leading edge 
device mass production. New annealing technologies that 
is suitable for shallower S/D are demanded for further 
scaling of CMOS devices. Melt laser annealing (LA) is one 
of such technologies. Though LA has long development 
history, melt LA currently stands for LA that utilizes melting 
point difference between crystalline Si and amorphous Si. 
Selective melting of a thin amorphous Si layer that has lower 
melting point prevents over-melt to crystalline Si and leads 
to high activation due to non-equilibrium re-crystallization. 
Amorphous layer can be formed heavy ion, such as Ge+, 
implantation prior to dopant implantation.  

We used two laser source shown in Fig. 4. One is KrF 
excimer laser and another is all-solid-state green laser. Both 
lasers provides nanosecond order pulse. We have proposed 
the combination of substrate heating and LA, that is heat-
assisted LA (HALA) [11-13]. This method was applicable 
to ultra-shallow junctions shallower than 20 nm and sheet 
resistance lower than 1 kΩ/sq. was easily obtained. Based 
on heat-assisted LA, we have proposed a new LA scheme, 
partial-melt LA (PMLA). This scheme utilizes solid-phase 
regrowth of amorphous-Si during preparation heating for 
HALA. By stopping appropriate timing,  amorphous layer 
thinner than initial thickness can be obtained. This provides 
separation of juncntion depth and amorphous layer thickness, 
which means increase in process design freedom. We have 
demonstrated PMLA with 10 nm junction formation [14,15]. 
Sheet resistance about 700Ω/sq. was obtained for 10 nm 
junctions with negligible diffusion, as shown in Fig. 6.  
Green laser has deep penetration depth compared with KrF 
excimer laser. This leads to increase in laser power, in other 
words difficulties for development of production equipments. 
To compensate this problem, we are working on green laser 
annealing with light absorber. We have discussed selection 
of light absorber materials and their layered structures based 
on both experimental and simulation results [16-19].

4. Summary
Our ac t iv i t ies on f ront -end device fabr ica t ion 



Fig. 1 Schematic model of ingle-metal dual-workfunction CMOS.
By forming impurity pileup at the metal/gate insulator interface, 
metal workfucntion can be tuned.

technologies beneficial for mixed-signal application 
like 3D-CSS was introduced. We are currently working 
integration of these technologies for MOSFET fabrication to 
demonstrate their usefulness.
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Fig. 2 Nitrogen back-side SIMS profiles in a Mo/SiO2/Si MOS 
structure. Nitrogen pileup was formed after adequate annealing. 

Fig. 3 A model to explain Mo workfunction shift. By the difference 
of electron negativity, electric dioples are formed at the Mo/SiO2 

interface.

Fig. 4 Penetration depth of KrF excimer laser and green laser light.

Fig. 5 Relationships between dopant profi les and amorphized layer 
depth before and after melt laser annealing.   

Fig. 6 Sheet resistance of ultra-shallow jucntions formed with 
PMLA. 
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Fundamental Device Technologies for 3DCSS
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Workfunction Tunable Metal Gate

Mo gate with Nitrogen pileup formation:

This poster

NiSi FUSI: visit poster P-26 

Pd2Si FUSI: coming next time
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Mo Gate Workfunction Tuning by Nitrogen-Dope
• Nitrogen ion implantation

( T. Amada et al., MRS2002, 716, 299 )

( R.J.P. Lander et al., MRS2002, 716, 253 )

• Nitrogen solid-phase diffusion (N-SPD)

but…
- increases in interface state & leakage current

( P. Ranade et al., MRS2000, 611, C.3.2.1)
- sufficient workfunction shift, ΔΦMo = -1 eV

- ΔΦMo = -0.5 eV
- No degradation

( M. Hino et al., SSDM2003, 494 )

Ec

Ev

EI

4.03eV

5.10eV

4.05eV

5.17eV

4.60eV

N-SPD

Fabrication of Mo Gate MOSFET with N-SPD
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Nitrogen Solid-Phase Diffusion into Mo Gate

10-14

10-12

10-10

10-8

10-6

10-4

0 1 2 3

w/o N-SPD
MOSFET
expected
 (diode)

I d (
A

)

Vg (V)

L/W : 1/10 μm
Tox : 5 nm

Vd : 0.05 V

diode
MOSFET -0.1 eV

-0.46 eV
ΔΦMo

p-Si (100)

Gate oxidation (5 nm) 

Mo & TiN sputter (50 & 30 nm) 

Nitrogen Solid-Phase Diffusion
(800°C, 1min)

TiN removal

S/D implantation

Al wiring and PMA

LOCOS formation

( As : 5x1015 cm-2, 30 keV )

Gate formation

S/D activation annealing
(900°C, 1min)

diode
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Nitrogen Redistribution by S/D Activation Annealing
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Nitrogen Redistribution in Mo Gate (Oxide-cover)

just after N-SPD

after S/D activation annealing

N pileup at Mo/SiO2 interface
was formed

N pileup at bottom Mo/SiO2
Interface redistributes toward 
top and two side interfaces.

small Vth shift
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Device Characteristics of Oxide-cover & TiN-cap
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Ultra Shallow Junction Formation

Proposal of New Scheme

Pre-amorphization Implantation

Solid Phase Regrowth

Laser Irradiation

Partial Melt Laser Annealing

10

Basic Ideas of Schemes

PMLA: melt(Good activation) + non-melt(Diffusion less) 
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PMLA Time Sequence

Substrate Temperature (Tsub): 250 – 525oC
• Laser  Energy  Density   (EL) : 200 – 600 mJ/cm2

• FWHM of Laser Pulse: 38 ns, Pulse Number: 1 Pulse

Temperature Profile

10 5 10

Tsub

Time [min]

Laser Irradiations (EL)
Heating Up Cooling Down

12

Xj~ta

melt LA

ta: Amorphized 
layer thickness ta

SPE

Xj

PMLA

PMLA: 
Amorphization depth is free from junction depth

Advantage of PMLA
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XTEM before and After Laser Irradiation
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After LA
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Improved Sequence of PMLA
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