
1. Introduction
     To realize various functionalities of LSI’s, different 
kinds of devices have been required to be monolithically 
integrated in an LSI chip.  One example is power 
transistor which is connected in series to a circuit block 
providing ultra-low stand-by current by switching the 
pull-down power transistor, as schematically shown in 
Fig. 1.

  

Fig. 1  An application of on-chip power transistor for ultra-low 
stand-by power circuit.

     To make the transistor as small as possible, 
corrugated-channel transistor, CCT [1] has been 
proposed, as shown in Fig. 2.  The CCT is a type of 
BCT with plural channels.  The folded channel provides 
reduced planar area. Targets of the BCT are shown in 
Fig. 3 as compared with conventional FINFET [2].  

       

Fig. 2  Cross section of  corrugated-channel transistor, CCT  
(b) of which channel width is equivalent to that of  planar 
transistor.  

2. Experimental and Discussion
     Key techniques to realize the BCT are (a) high-aspect 
ratio lithography and etching, (b) three-dimensional 
(3-D) gate formation, (c) 3-D impurity doping, and 
(d) conformal electrode formation [3].  Electron beam 
exposure system is employed to delineate up to 2-µm 
thick photoresist.  Orientation-dependent preferential 
etching with tetra-methyl-ammonium-hydroxide, TMAH 
is used to form silicon beams on (110) substrate.  
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Fig. 3  Targets of the BCT in terms of planar area-normalized 
current drivability.

A realized structure having 31 silicon beams is shown in 
Fig. 4. Conformal gate delineation on tall silicon beam 
is also a key to realize sub-µm gate length however, 
there may be no choice but to utilize isotropic etching at 
present.  Less-directional plasma etching technique can 
realize the gate length almost equal to the height of the 
silicon beam at present.

Fig. 4  An SEM cross section of channel of the target A of BCT, 
etched with TMAH, having 31 silicon beams on (110) surface.

     Since strongly directional ion implantation may not be 
adequate to achieve uniform doping to tall comb-shaped 
silicon beams, plasma doping with AsH3+Ar is utilized 
to form lightly-doped region along the beam surface.  
Figure 5 shows a cross section of a silicon beam which 
is doped with this plasma doping.  It is evaluated that 
the beam is uniformly doped even in the bottom region 
of the beam.  An obtained typical sheet resistance value 
is about 500 Ω/sq.  This is adequate for the extension 
doping.  



  

Fig. 5  An SEM cross section of AsH3 plasma-doped region 
along beam surface.

     Very low resistance of source and drain (S/D) regions 
are also inevitable not to sacrifice transistor drivability.  
Ni-silicided S/D achieves resistivity of 2.5x10-5 Ω-cm.  
A cross section of  Ni-silicide beam is shown in Fi.g 6.  
The resistivity of the silicided beam is about 20-times 
lower than that of heavily doped n+ silicon.  

Fig. 6  An SEM cross section of Ni-silicide silicon beam.

     Obtained drain currents are shown in Fig. 7 for the 
target A of the BCT of which channel structure is already 
shown in Fig. 4.  Almost 5-times increase in the current 
is achieved as compared to the planar at the same planar 
area.   A cross section and performance of the target 
B of BCT are shown in Figs. 8 and 9.  Increased drain 
currents are realized in proportion to the number of the 
beams.   

Fig. 7  Obtained drain current of the target A of BCT of which 
channel region is shown in Fig. 4.

Fig. 8  An SEM cross section of the target B of BCT fabricated 
on (100) SOI substrate.

Fig. 9  Obtained drain currents of BCT of the target B 
fabricated on (100) SOI substrate.

3. Conclusion
        Key techniques to realize 3-D MOS transistor such 
as the BCT are addressed.  The BCT has strong potential 
for applying itself to area-conscious, i. e. cost-conscious 
LSI integrating on-chip power transistor.  While, even 
if sub-half-µm gate length has already been obtained 
on 0.5-µm tall silicon beam, further scalability beyond 
sub-100 nm is not yet achieved.  
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ＮＴＩＰ Current drivability of BCT with multi-channels
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ＮＴＩＰ Application of silicided source/drain

Ni-silicide formation on Si beam

Material           Resistivity (Ω-cm)

n+-Si beam         4.2x10-4

Ni silicided beam 2.5x10-5


