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1. Introduction

Recently, there is much interest in High-k/Ge
FET for the high performance application because
of higher intrinsic mobility of Ge than that of Si
[1]. The control of interfacial oxidation between
high-k and Ge substrate is the one of key issues.
It has been reported that the interfacial oxide
layer was formed by post deposition anneal
(PDA) in a similar fashion as a high-k/Si(100)
systems [2]. However, the potential barrier height
between ultrathin GeO, and Ge substrate
especially conduction band (CB) offset is still a
matter of research.

In this work, we extended our research to the
GeO, formed by UV-O; oxidation on Ge
substrate. Energy band profile and defects state
density for the ultrathin GeO,/Ge(100) structures
were characterized by photoemission
measurements and compared with SiO,/Si(100)
case.

2. Experimental

After wet-chemically cleaning p-type Ge(100)
and Si(100) substrate, oxide layer was formed by
UV-O; treatment at room temperature in ~9.0 torr.
The electronic states of GeO,/Ge(100) and
SiO,/Si(100) structures were characterized by in-
situ X-ray photoelectron spectroscopy (XPS) and
total photoelectron yield spectroscopy (PYS).

3. Results and Discussion

From the XPS analysis, we have found that
Ge(100) surface is oxidized in a layer by layer
manner using by UV-O; as well as Si(100) as
shown in Fig. 1. And, UV-O; oxidation rates
between GeO, and SiO, are almost constant in the
oxide film thickness region below ~1nm.

The chemical composition of the ultrathin GeOy
films formed by UV-Oj; is almost constant in the
thickness range from 0.4 to 1.9nm (Fig. 2.).
Because of the fact that Ge LsMy3M,3 auger
signals overlap with the energy loss spectrum of
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the primary O1s core line signals [3], we
determined the energy bandgap (Eg) of the GeO,
ultrathin films from energy loss signals of Ge2p
3/2 photoelectrons (Fig. 3). Thus, the Eg of GeO,
was determined to be 5.70eVz0.05eV in the
thickness range from 0.9~1.9nm. This Eg is
almost the same as the value of glassy GeO;
measured by optical reflectance (5.63eV) [4]. To
evaluate the valence band (VB) offset between
GeO, and Ge(100), the VB spectra for
Ge0,/Ge(100) were measured and deconvoluted
into two components originated from GeO, and
Ge(100) as shown Fig. 4. In the spectral
deconvolution, the VB spectrum separately
measured for wet-cleaned Ge(100) was used.
From the energy separation of the tops of the
deconvoluted VB spectra, the VB offset between
GeO, and Ge(100) is determined to be
4.00eV+0.05eV. Considering the Eg of crystal
Ge (0.66eV) and these result, the CB offset
between GeO, and Ge(100) is obtained to be
1.04eV (Fig. 5). From the PYS measurements,
we found that filled interface states at the
GeO,/Ge(100) is about one order of magnitude
lager than that at SiO,/Si(100) case in the same

oxide thickness.

4. Conclusion

For the GeO,/Ge(100) structure formed by UV-
O3, Ge(100) surface is oxidized layer by layer
manner and UV-O3 oxidation rates between GeO,
and SiO, are almost constant in the oxide film
thickness region below ~1nm. The energy band
offsets between GeO, and Ge(100) are ~4.0eV in
the valence band edge and ~1.04eV in the
conduction band edge, respectively.
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Determination of Energy Bandgap for Thermally-grown GeO2
Films (3.8~15.5nm) from O1s Photoelectron Energy Loss Spectra
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for UV-O3 Oxidized Ge(100)
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PYS Spectra and Energy Distribution of Electronic
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